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ABSTRACT: In a recent article (J. Comput. Chem. 2013, 34, 132−140), convective
replica-exchange (convective-RE) has been presented as an alternative to the
standard even−odd transition scheme. Computations on systems of various
complexity have shown that convective-RE may increase the number of replica
round-trips in temperature space with respect to the standard exchange scheme,
leading to a more effective sampling of energy basins. Moreover, it has been shown
that the method may prevent the formation of bottlenecks in the diffusive walk of
replicas through the space of temperature states. By using an ideal temperature-RE
model and a classical harmonic-oscillator RE scheme, we study the performances of
convective-RE when ergodicity is not broken and convergence of acceptance
probabilities is attained. In this dynamic regime, the round-trip ratio between
convective and standard-RE is at maximum ∼ 1.5, a value much smaller than that observed in nonergodic simulations. For large
acceptance probabilities, the standard-RE outperforms convective-RE. Our observations suggest that convective-RE can safely be
used in either ergodic or non-ergodic regimes; however, convective-RE is advantageous only when bottlenecks occur in the state-
space diffusion of replicas, or when acceptance probabilities are globally low. We also show that decoupling of the state-space
dynamics of the stick replica from the dynamics of the remaining replicas improves the efficiency of convective-RE at low
acceptance probability regimes.

1. INTRODUCTION

Convective-RE1 is a simulation method designed to enhance
replica round-trip rate and to avoid the formation of replica
diffusion bottlenecks through the states of a generalized
ensemble.2−5 To achieve these benefits, convective-RE
artificially forces each replica to perform round-trips through
the states of the generalized ensemble. In doing so, global
balance holds, and a stationary distribution can be reached. For
the sake of clarity and to introduce a few key concepts, we will
summarize the algorithm underlying the convective-RE by
using the words of Spill and co-workers.1

“In the RE method, N simulations of the same system are
performed in parallel. Each simulation can be run in dif ferent
ensembles [also called states], for example, at dif ferent temper-
atures, ... which are all controlled via a set of control parameters.
Each state will be given a unique label for quick reference. For
simplicity, the states’ labels are a monotonous function of the
control parameters (in the canonical case, the lowest temperature is
assigned label 1 and the highest is given label N). At a given
exchange rate, adjacent states are allowed to exchange their
conformations with a certain probability, given by the Metropolis
criterion.6 We call a given conformation whose simulation
temperature is a function of time a replica. Let Si be the function
that gives the state of replica i.
... The convective algorithm is constructed as follows. Before

trying the f irst exchange, a replica is chosen at random; we will
refer to it as the stick replica; other replicas are passive. Let i be the
index of this stick replica, which is thus in state Si at time 0. Upon
the next exchange attempt, the transition matrix is chosen so as to

allow the stick replica to exchange with its right neighbor state, Si +
1. If the exchange fails, the simulation of each replica is continued.
The next exchange attempt is however performed using the same
transition matrix. The transition matrix is not changed until the
exchange with the stick replica is accepted; the stick replica
eventually is in state Si + 1. The exchange matrix is then changed to
allow for an exchange between Si + 1 and Si + 2, and the same
procedure is applied until the stick replica is in state N. At that
point, the direction is reversed, and the transition matrices are
chosen so that the stick replica can only go to lower state indices.
Finally, when the stick replica reaches the lowest temperature state,
the direction is reversed again and the same procedure is applied
until the stick replica reaches its initial state Si. The stick replica has
then accomplished a round-trip in state space. Then, another
replica, j, is chosen to be the stick replica and the same procedure is
applied in turn until all replicas have been convective once, after
which the stick replica is again replica i, j, and so forth.”
Convective-RE converges to the desired distribution. In the

original article,1 it is proven both analytically and numerically
that convective-RE satisfies global balance for the Boltzmann
distribution. Also, it is easily seen that in this method, as in any
replica-exchange method with N states, there is a nonzero
probability of reaching any state from any other state after N −
1 moves, so the sampling is regular. These two conditions
ensure7 that there is a unique stationary limit to the Markov
chain, which is the Boltzmann distribution.
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The ability of convective-RE to explore conformational space
was tested in systems of different degrees of complexity: alanine
dipeptide in implicit solvent, the GB1 β-hairpin in explicit
solvent and the Aβ25−35 homotrimer in a coarse grained
representation.1 Comparison of convective-RE with the stand-
ard method, namely the deterministic even−odd exchange
scheme,8 revealed that convective-RE significantly enhances
sampling of energy landscapes, and increases the number of
replica round-trips through temperature space. Sampling
efficiency and number of replica round-trips are known to be
correlated9−12 in generalized ensemble13,14 approaches such as
RE, and increasing the number of round-trips is often a means
of enhancing exploration of conformational space. Given that
convective-RE forces (stick) replicas to perform round-trips
through state space, it seems surprising that replica round-trip
rates increase in GB1 β-hairpin and Aβ25−35 systems while they
decrease in the less complex alanine dipeptide system.1 In fact,
the ratio between convective and standard-RE round-trip rates
goes from 48 and 8 for GB1 β-hairpin and Aβ25−35 systems,
respectively, to 0.65 for the alanine dipeptide. In this case, the
standard method even outperforms convective-RE. Although
these observations point to some dependence of the perform-
ances of convective-RE on the complexity of the system, a
precise rationalization is difficult owing to the nonergodic
regime to which GB1 β-hairpin and Aβ25−35 systems are
subjected. In the latter systems, ergodicity breaking is revealed
by a couple of observations: (i) the number of new structures
detected during standard and convective-RE simulations are
still increasing at the end of the simulation (see Figure 3 of ref
1) and (ii) in the convective-RE simulation, an anomalous
correlation between average potential energies and populations
of conformational basins has been observed (see Table 1 and
related discussion of ref 1).
We notice that for the above cases, ergodicity breaking is not

intrinsic to the systems or somehow generated by a sort of
unsuitability of the simulation algorithm. Rather, it is a
consequence of the small simulation time with respect to the
times that would be necessary to get a completely convergent
sampling. Furthermore, a common drawback of RE simulations
of complex systems lies in the fact that conformations are not
decorrelated between successive exchanges (which happened
every 3 to 6 ps in ref 1). This correlation may dramatically
increase the time needed to reach ergodicity in these systems.
We note that the broken ergodicity in GB1 β-hairpin and
Aβ25−35 simulations prevented from getting sound quantitative
evaluations of the performances of convective-RE.
In the present article, we tackle the above aspect of the

problem by exploiting two benchmark systems presenting
ergodic behavior, for which convergence of the acceptance
probabilities of replica exchanges and number of replica round-
trips is almost achieved. We also consider a third case where a
local bottleneck is present in the diffusive walk of replicas
through state space. In particular, we will explore how the
acceptance probability of replica exchanges, modulated by the
number of replicas, affects the number of replica round-trips in
convective-RE compared to the standard method.
Finally, we will show that it is possible to improve the

efficiency of convective-RE, by supplying the convective
scheme with an algorithm aimed at decoupling the dynamics
of stick and passive replicas through state space.

2. SETUP OF BENCHMARK SIMULATIONS
The first benchmark case consists of a series of ideal RE
simulations in temperature space in which the potential
energies of each replica are sampled according to a Gaussian
probability:
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where E is the potential energy of the replica lying in the state
at temperature Ti and C is the system heat capacity, which we
assume to be constant.15 Note that in eq 1, C denotes the
(extensive) heat capacity in units of Boltzmann constant kB and
refers to the potential energy part of the total energy. In order
to get equal average acceptance probabilities for the exchanges
between neighboring replicas, the spacing law of temperatures
is16
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where [Tmin,Tmax] is the temperature range covered by the N
states/replicas of the generalized ensemble, with temperature
index i = 1,...,N. For both convective and standard-RE
algorithms we have performed several RE simulations with a
number of replicas N ranging from 8 to 100, but with a fixed
temperature range Tmin = T1 = 300 K to Tmax = TN = 1500 K
and with temperature spacing according to eq 2. In these
simulations, replica potential energies E are drawn at each RE
step from the distributions given by eq 1, with C = 500 for the
heat capacity. The Metropolis criterion6 is applied to evaluate
the outcome of the exchange attempts. In order to get
convergent estimates of both acceptance probabilities and
number of replica round-trips, long simulations lasting 107 steps
have been carried out. Replica exchanges are attempted at every
step.
The other benchmark case consists of RE simulations in

which the states are described by one-dimensional harmonic
oscillators, whose Hamiltonians depend parametrically by a
factor λi entering both in the equilibrium position and in the
force constant of the oscillators: Hi(x) = 1/2K(λi)(x − λi)

2. At
each step, the replica coordinates, x, are picked according to a
Boltzmann distribution with β−1 = kBT = 1:

ρ = −−x Z H x( ) exp( ( )),i i
1

(3)

with Z being the partition function of the system. In all
simulations, the parameter λi ranges from λ1 = 0 to λN = 40 in
equally spaced steps, i.e., Δλ = λi+1 − λi = 40/(N − 1). Two
series of simulations have been performed with different
definition of K(λi): A-simulations, in which K(λi) = 1 for all
states i = 1,2,...,N; and B-simulations, in which

λ = + λ− −K( ) 1 30 ei
( 10)i

2

(4)

This choice for K(λi) allows us to introduce a bottleneck in
correspondence of few states associated with λi around the
value of 10. For example, in a B-simulation with 32 replicas, eq
4 gives rise to the K(λi) sequence shown in Figure 1a. In a
standard B-simulation, such a sequence leads to an acceptance
probability bottleneck mainly localized at the transitions λ8 ⇔
λ9 and λ9 ⇔ λ10 (see Figure 1b). For these two transitions, the
average acceptance probabilities are in fact 2.4 × 10−4 and 2.7 ×
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10−2, respectively, versus values of about 0.36 for replica
transitions far from the bottleneck.
Like in temperature-RE simulations, a series of A-simulations

have been performed with N ranging from 8 to 100, each
lasting 107 steps. At every step, the replica coordinates x are
drawn according to eq 3 and simultaneously a replica exchange
is attempted. B-simulations are instead 3.4 × 105 steps long,
with N ranging from 32 to 96. The setup of B-simulations has
been devised to mimic a system where all parameters, i.e. Δλ,
K(λi) and N, yield acceptance probabilities comparable to those
of typical atomistic simulations in the generalized ensem-
ble17−19 (see Figure 1b). Also the number of steps has been
chosen to get simulation times consistent with state-of-the-art
atomistic simulations. For example, with a number of attempted
replica-exchanges of 3.4 × 105 and considering that replica
exchanges are typically performed every few ps in atomistic
simulations, our B-simulations would cover times of the order
of 102−103 ns. In the specific case that replica exchanges are
attempted every 6 ps, as in Aβ25−35 simulations of ref 1, our
simulation time would correspond to slightly more than 2 μs
(versus 0.5 μs of Aβ25−35 simulations). Since all above quantities
take realistic values, we expect that the number of round-trips is
comparable to that of atomistic simulations. On the other side,
we notice that, owing to the relatively small number of steps in
B-simulations, the average round-trip numbers may not be large
enough to allow precise evaluations. This aspect can be
particularly critical in those B-simulations that are affected by
low acceptance probabilities around the bottleneck. Therefore,
in order to confirm our outcomes, we also performed B-
simulations with standard and convective-RE schemes lasting
107 steps, in which the number of round-trips is expected to
increase by a factor of about 30 with respect to B-simulations
3.4 × 105 steps long.

3. RESULTS AND DISCUSSION
In Figure 2a, we report the number of round-trips per replica,
nrt , as a function of the average acceptance probability, pacc ,
obtained from standard and convective-RE simulations
performed in λ space (A-simulations) and in temperature
space (temperature-RE simulations). The acceptance proba-
bility has been modulated by varying the number N of replicas
in the simulations. The trends of the curves obtained from
temperature and λ-space simulations are similar because the
sampling of potential energy and replica coordinates,
respectively, occurs according to Normal distributions (eqs 1
and 3). In convective-RE, the maximum performance is reached
at pacc ≃ 0.28, versus pacc ≃ 0.4. of standard-RE.8 It is worth
noting that, at small pacc values, convective-RE outperforms
standard-RE, whereas the opposite occurs at large pacc. The

crossover regime falls at pacc ≃ 0.35 for both types of
simulations.
The performances of convective and standard-RE can be

compared by plotting the ratio of the number of replica round-
t r ip s e s t ima ted by the two methods , tha t i s ,
rrt = [nrt]conv/[nrt]stand , as a function of pacc. The plots are
shown in Figure 2b. We note that, for temperature-RE
simulations in the regime of very small pacc values (∼ 3.2 ×
10−4), nrt for convective-RE is 1.35 times greater than nrt for
standard-RE. Similar outcomes are obtained in λ-space
simulations (rrt ≃ 1.4 at pacc ≃ 5.4 × 10−5). In both cases,
the ratio rrt , though significantly greater than 1, is about 1 order
of magnitude smaller than that gained from nonergodic
simulations of atomistic systems.1 Interestingly, the standard
method appears to be more efficient than convective-RE when
pacc is large, and reaches rrt ≃ 0.67 for pacc ≃ 0.78. These
observations are roughly consistent with the outcomes of ref 1.
In fact, under the well-grounded assumption that crossover is
not attained in the simulations of GB1 β-hairpin and Aβ25−35,

20

we may argue that pacc is in average smaller for GB1 β-hairpin
than for Aβ25−35 from the fact that the number of round-trips
per replica, that is, nrt/Simul.Time, is smaller in the standard-
RE simulation of the former system (nrt/Simul.Time = 3.1 ×
10−4 found in standard-RE simulation of GB1 β-hairpin, versus
9.2 × 10−3 found in standard-RE simulation of Aβ25−35). Thus,
on the basis of our results, a greater rrt is expected for the GB1
β-hairpin simulation. Indeed, this is in agreement with the
outcomes of ref 1 (rrt = 48 for GB1 β-hairpin versus rrt = 8 for
Aβ25−35). Moreover, the much larger number of round-trips per
replica achieved in the standard-RE simulation of alanine
dipeptide points to a pacc even greater than that of the Aβ25−35
simulation. Considering that rrt = 0.65, we may argue that, in
the case of the alanine dipeptide, crossover regime has been
largely surpassed.
In spite of this qualitative agreement between the present

study and the results of ref 1, we notice the very large
quantitative difference in the rrt values. To explain such
differences one could suppose that the ratio rrt goes
asymptotically to infinity as pacc goes to zero, but this is not
strongly supported by the quite large nrt , and hence the non-
negligible values of pacc , observed in the simulations of Aβ25−35.
On the other hand, such an asymptotic regime would not be of

Figure 1. (a) Sequence of the K(λi) parameter as a function of the
index i employed in a B-simulation with 32 replicas. (b) Acceptance
probability pacc of replica transitions λi ⇔ λi+1 as a function of the index
i computed from a standard-RE B-simulation with 32 replicas.

Figure 2. (a) Number of round-trips per replica, nrt , as a function of
the average acceptance probability, pacc , calculated from temperature-
RE simulations and A-simulations (red and black colors, respectively)
with various numbers of replicas (circles and triangles from left to right
represent simulations performed with N = 8, 10, 12, 14, 16, 18, 20, 24,
30, 40, 60, 80, 100). Simulations using the standard method are
reported with triangles, while simulations using convective-RE are
reported with circles. (b) Ratio between the numbers of replica round-
trips estimated with convective-RE and standard simulations, rrt =
[nrt]conv/[nrt]stand, in temperature-RE simulations and A-simulations
(red and black colors, respectively). The dashed line indicates the
crossover regime.
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great relevance in practice, because it would be reached when
the number of round-trips is too small to make the RE
simulation really effective. In fact, in the limit of zero pacc , the
number of round-trips per replica in convective-RE becomes
negligible, so that all benefits of the method would be lost. For
example, the number of round-trips per replica in convective-
RE A-simulations obtained by using 8 replicas is 6.9, while rrt is
only ∼1.4. Probably, to obtain rrt values of the order of 10,
simulations with 1 or less round-trips per replica should be
performed.
In light of these observations, and also considering that

convective-RE preserves ergodicity,1 the outcomes of ref 1
could be interpreted as due to the lack of convergence in the
computed nrt. On the other side, the relatively high number of
round-trips observed especially in the Aβ25−35 simulation leaves
open the question about the achievement of convergence.
Some answer to this problem could be obtained by increasing
enormously the simulation time and decreasing the rate of
replica-transition attempts as well, which is, however, out of the
reach of current computational resources.
The relative performance of standard and convective-RE in

the presence of a bottleneck in replica-transitions can be
appreciated in Figure 3a, where we report nrt as a function of

the minimum acceptance probability among all replica
transitions, min(pacc), computed for B-simulations. We point
out that, in the presence of a bottleneck in the replica
transitions, the overall diffusion of the replicas through state
space is regulated by the lowest acceptance probability
occurring at bottleneck transition itself. In this situation,
min(pacc) rather than the pacc (which is averaged over all replica
transitions) becomes more appropriate to monitor the nrt trend.
The behavior of the curves of Figure 3a looks like that of Figure
2a, though the crossover regime is moved down to min(pacc) ≃
3.3 × 10−2 (see ref 21). Similarly, the performances of the
convective-RE relative to the standard method can be better
appreciated from the rrt versus min(pacc) plot reported in Figure
3b. At small values of min(pacc), the curve shows a quite noisy
behavior due to poor convergence arising from the small
number of simulation steps. As a matter of fact, increasing the
number of steps from 3.4 × 105 to 107, a more regular, but
substantially identical, trend is observed (open circles in Figure

3b). The value of rrt ranges from ∼1.4 at min(pacc) ≃ 2.2 × 10−4

(∼1.3, in better convergence conditions) to ∼0.83 at min(pacc)
≃ 0.15 (practically unchanged, in better convergence
conditions). With respect to the uniform distribution of
acceptance probabilities enforced in A-simulations, the
presence of a bottleneck does not change significantly the
performances of convective-RE relative to the standard method.
Convective-RE is better than standard-RE when low acceptance
probabilities occur, due to a nonuniform pacc distribution
featured by the presence of a bottleneck1 (see Figure 1b).
However, small acceptance probabilities imply low round-trip

rates also in convective-RE, which may prevent the RE scheme
from being effective. For example, in B-simulations, the best
performances of convective-RE with respect to standard-RE (rrt
≃ 1.4) is obtained with 32 replicas, yielding min(pacc) = 2.2 ×
10−4. Unfortunately, this acceptance probability leads to a small
number of round-trips (nrt ≃ 1.3), which can typically be
increased by changing the number of replicas. In our case, to
obtain a workable nrt value, for example, nrt ≃ 15, we would
have needed to increase the number of replicas to 48. With this
number of replicas, the ratio rrt lowers to ∼1.2. A further
increase of N, for example, N = 64, yields a satisfactory number
of round-trips (nrt ≃ 32), but the advantages of convective-RE
almost disappear (rrt ≃ 1). In summary, by doubling the
number of replicas from 32 to 64, the round-trip rate increases
by more than a factor of 20 with a practically complete loss of
the advantages of convective-RE with respect to standard RE.
Another interesting aspect of convective-RE observed in

Aβ25−35 simulation
1 was the almost unexpected distribution of

the number of round-trips between stick and passive replicas.
Among the 706 round-trips globally observed in the Aβ25−35
simulation, 435 were realized by stick replicas, while the
remaining 271 round-trips were accomplished by passive
replicas. Interestingly, this number is still three times greater
than in the standard simulation, during which only 88 round-
trips were counted. This fact was explained by observing that
replica exchanges are correlated in convective-RE: “When the
stick replica crosses the bottleneck, a passive replica crosses it as well,
but in the other direction.” This behavior is not confirmed by the
current B-simulations, as shown in Figure 4, where we report nrt
as a function of min(pacc) for the standard and convective-RE,
detailing the contributions to the total number of round-trips
from stick and passive replicas. We note that, at variance with
the Aβ25−35 simulation data, at higher values of min(pacc) the
contribution of passive replicas to nrt is greater than that of the
stick replica; also, that each contribution is smaller than the
number of round-trips in the standard-RE.

4. COMBINING CONVECTIVE-RE WITH A RANDOM
PAIR-REPLICA SELECTION SCHEME

The efficiency of convective-RE with respect to the standard
even−odd scheme stems from generating replica exchanges
aimed at moving a single replica, the so-called stick replica,
along one of the two possible directions in state space. When
the upper (or lower) end state is reached, exchanges are
attempted to guide the stick replica in the opposite direction,
that is, toward the other end state. This process is repeated
until the stick replica completes a round-trip. During this forced
walk, the other replicas, called passive replicas, are “con-
strained” to move according to the stick replica, on the basis of
an even−odd scheme. When the acceptance probabilities are
globally large, the constrained motion of passive replicas
prevents their free diffusion through the states, eventually

Figure 3. (a) Number of round-trips per replica, nrt , as a function of
the minimum acceptance probability, min(pacc), calculated from B-
simulations with various numbers of replicas (from left to right, data of
simulations with N = 32, 38, 48, 52, 56, 60, 64, 70, 80, 96 are
reported). B-simulations using the standard method are reported with
triangles, while B-simulations using convective-RE are reported with
circles. (b) Ratio between the numbers of replica round-trips estimated
with convective-RE and standard B-simulations, rrt = [nrt]conv/[nrt]stand,
as a function of min(pacc) (filled circles). The rrt quantity calculated
from B-simulations of 107 steps is reported for comparison (open
circles). The dashed line marks the crossover regime (rrt = 1).
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leading to a significant reduction of the number of round-trips
(Figures 2 and 3). This constrained motion of passive replicas
has instead no dramatic effects as bottlenecks occur, because, in
such a case, the dynamics of replicas is dominated by the
convective component of the motion. However, in the presence
of bottlenecks, we expect that constraining passive replicas to
the stick one, somehow slows down the walk diffusion of the
former. In fact, passive replicas will continue to swap between
two states, without a resultant net diffusion, until the stick
replica will overcome the bottleneck.
Based on the above observations, we envisage a possibility of

improving the diffusion of passive replicas through the space of
states by decoupling their dynamics from that of the stick
replica. This can be realized by supplying the convective
(even−odd) scheme with a stochastic criterion to choose the
replica pairs that must undergo attempted exchanges. This
strategy basically allows decoupling between passive and stick
replicas, so that the exchanges involving the passive replicas are
independent of each other and, especially, independent of the
stick replica. A pseudocode related to this random-convective
exchange scheme is reported in Table 1.
The round-trip efficiency ratios, rrt (see above for definition),

obtained from temperature-RE simulations, A-simulations and
B-simulations using the random-convective scheme are
compared in Figure 5 with the convective even−odd approach.1
Overall, we note that, when convective and random-pair
selection schemes are combined, rrt increases, but only in the
regime of low acceptance probability. In this regime, the
increase of efficiency of the random-convective scheme with
respect to the convective even−odd method, is relevant in
percentage, even if it appears quite modest in absolute terms.
The opposite trend, that is, a decrease of efficiency of the
random convective-RE, is observed for large acceptance
probabilities.
In light of the previous discussion, the former behavior is not

surprising. On the contrary, the loss of performance of the
random convective-RE at large acceptance probabilities has a
more subtle origin, which can be understood by imagining the
performances of the three algorithms, standard even−odd,

convective even−odd and random-convective, in the limit of
pacc ∼ 1. Under this assumption, using the standard even−odd
as well as the convective even−odd schemes leads to a very fast
round-trip rate. In such cases, in fact, a round-trip takes exactly
2N attempted replica exchanges, where N is the number of
states in the simulation. Note that this is the maximum
efficiency one can get from RE simulations in terms of round-
trip rate. These performances cannot clearly be obtained by
using the random-convective scheme, because the random
choice of pairs of replicas to be exchanged can easily invert their
walk in the space of states. Consistently with the present
results, it is worth noting that loss of efficiency was also
observed in the so-called stochastic even−odd scheme,8 which

Figure 4. Number of round-trips per replica, nrt , as a function of the
minimum acceptance probability, min(pacc), calculated from B-
simulations (3.4 × 105 steps) with various numbers of replicas
(from left to right data of simulations with N = 32, 38, 48, 52, 56, 60,
64, 70, 80, 96 are reported). Simulations using the standard method
are reported with triangles. For convective-RE simulations, the total nrt
and the contributions from stick and passive replicas are shown (black,
red, and blue circles, respectively). The nrt values obtained with B-
simulations of 107 steps differ from those reported here by a factor of
∼ 30, but the overall behavior remains practically unchanged (data
available upon request).

Table 1. Pseudo-code for the Random Convective-RE
Scheme

set M = number of states (replicas)
set s = stick replica
loop for t = 1,2,...,T (T = no. of tried

exchanges needed
to obtain a round-trip of
replica s)

set allpairs(i) = 1 ∀ i = 1,...,M − 1 (i ≡ pairs of states)
set xchpairs(i) = 0 ∀ i = 1,...,M − 1 (i ≡ pairs of states)
set xchpairs(n) = 1 (n = pair of states

involved in the
exchange of the stick
replica s)

set allpairs(n) = 0
set allpairs(n − 1) = 0 (if n − 1 ∈ state-pair

domain)
set allpairs(n + 1) = 0 (if n + 1 ∈ state-pair

domain)
while allpairs() not null:
pick at random a pair of states p
if allpairs(p) = 0, go to previous step
set xchpairs(p) = 1
set allpairs(p) = 0
set allpairs(p − 1) = 0 (if p − 1 ∈ state-pair

domain)
set allpairs(p + 1) = 0 (if p + 1 ∈ state-pair

domain)
end while
make replica exchanges (Attempt replica

exchanges involving
state-pairs for which
xchpairs() = 1)

end
select another stick replica s
start loop again

Figure 5. Ratio between the numbers of replica round-trips estimated
with convective and standard RE simulations, rrt = [nrt]conv/[nrt]stand, as
a function of pacc (temperature-RE and A-simulations) and min(pacc)
(B-simulations). In each panel, the even−odd and random convective
schemes are compared (open squares and filled circles, respectively).
The dashed line marks the crossover regime (rrt = 1). For B-
simulations, results obtained with 107 steps are reported.
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has strong analogies with the random-convective sequence of
Table 1.

5. CONCLUDING REMARKS
In this article, we have investigated the performances of the
convective transition scheme1 for RE simulations relative to the
standard even−odd deterministic approach. Calculations have
been carried out in ideal fully ergodic conditions by means of
toy-model simulations. Overall, our calculations show that,
when ergodicity and convergence are both in place, the
performances of convective-RE, in terms of replica round-trip
rate, do not exceed 1.5 times the ones obtained with the
standard replica-transition scheme. Above some crossover value
of the acceptance probability, pacc , which occurs below the
optimal pacc value22 in simulations with uniform pacc
distribution, standard even−odd algorithm starts to be
competitive with convective-RE, outperforming the latter as
large pacc values are attained. Similar results are obtained if a
bottleneck in replica transitions is present. These observations
are consistent with the results reported in ref 1, though the
performances of convective-RE seem to be much less striking
than those observed in more complex systems. Although the
true reasons of these discrepancies are not completely
understood, we believe that uncertainties in round-trip rates
due to the loss of ergodicity arising from the shortness of the
simulations (with respect to the dynamics needed to get
effective sampling), may play some role. Therefore, it would be
interesting to evaluate the performances of convective-RE in
complex systems when round-trip rate reaches satisfactory
convergence, which may occur only by performing micro-
second scale simulations.
Furthermore, an attempt at improving the performances of

convective-RE has been done by devising a stochastic scheme
to select the passive replica pairs undergoing exchanges. The
exchange mechanism, based on decoupling the diffusion
motions of stick and passive replicas through the state space,
proved to be effective with respect to the even−odd convective
scheme as bottlenecks are present or the acceptance
probabilities are globally low. Conversely, the stochastic
selection criterion makes the efficiency significantly worse at
high acceptance probability regimes.
In summary, we have shown that, when bottlenecks occur in

RE simulations due to low acceptance probabilities arising, for
example, from a not optimized spacing between the states, or
when the acceptance probabilities are globally low due to small
numbers of states/replicas, the use of even−odd convective-RE
or random convective-RE schemes leads to improvements in
the round-trip rate. The benefits of convective schemes are lost
if the acceptance probabilities are globally large.
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