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The algorithm of the Ewald lattice sums is formulated in a form suited for application to lattice dynamics calculations for ionic
molecular crystals, employing molecular coordinates and a discrete-charges representation of the Coulomb interactions. The method
is used for a lattice dynamics calculation of KClO, crystal,‘including external and internal degrees of freedom. An atom/atom
plus charge/charge potential is used, providing a remarkably good agreement with the experimental data. The calculation is
extended also to the anharmonic properties: the calculated linewidths of the external phonons compare satisfactorily to the ob-
served values.

1. Introduction

Lattice dynamics (LD) calculations, both in the harmonic and in the anharmonic approximation, are com-
monly used in studies involving molecular crystals. In fact, they have proved to be a powerful to in the interpre-
tation of vibrational data; at the same time, they provide a useful means of testing potential models [1].

Crystals containing molecular and atomic ions have been the subject of a number of computational studies,
in which the different role played by short-range repulsive and long-range electrostatic interactions between
particles has been investigated. Molecular Dynamics simulations [2] have shown that many properties of ionic
molecular crystals can be explained on the basis of simple potential expressions, including a rigid ion model for
Coulomb interactions. The same models have been adopted in a few LD calculations about such crystals [3-
1]. ,

In this paper we present the results of LD calculations of the orthorhombic, low temperature modification of
KClO,. Internal and external modes of this crystal have been extensively studied in recent years by means of IR
and Raman spectroscopy [12-15]. In this paper we show that a good description of the observed vibrational
modes, including a discussion of anharmonic effects, can be reached using a potential of the type atom-atom
plus charge—charge.

In LD calculations involving an electrostatic potential one is faced with slowly converging lattice sums. The
most common solution to this problem is represented by the well-known Ewald transformations [ 16-18]. Since
in ionic molecular crystals it is convenient to use a set of molecular coordinates, which allow a separate descrip-
tion of translations, rotations and vibrations of ions [ 1], expressions of Ewald’s formulas in this formalism have
been developed. Although the general theory is well described in the literature, we have reported here the basics
steps, along with the final formulas; we believe this will give also the reader who is not familiar with the subject
a precise idea of the implications of the treatment. Section 2 deals with LD expressions for ionic molecular
crystals; section 3 with the corresponding Ewald formulas.

Results concerning the KClO, crystal are reported in sections 4 and 5.
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2. Lattice dynamics of ionic molecular crystals

The dynamics of crystals containing mono- and polyatomic ions is best studied by making use of a set of
molecular coordinates, extending the treatment originally developed for molecular crystals [1]. To each ion ¢
of N, atoms the following 3N, coordinates are associated: 3 mass-weighted Cartesian displacements of the center
of mass, 3 inertia-weighted rotations about the ion’s principal axes of inertia (these are 2 or O for a linear or
monatomic ion, respectively), and 3N,—6 (3N,—5 or 0) internal vibrations (normal modes).

The vibrational problem is solved, in the harmonic approximation, by diagonalizing the matrix D of second
derivatives of the crystal potential V with respect to the molecular coordinates. If cyclic boundary conditions
are imposed and a set of delocalized symmetry coordinates is used [ 1], the elements of D take the form

fqi 2V
Dk(f,q,l-,> ZWCXMI" n, (2.1)

where R”' is molecular coordinate i of ion ¢ belonging to formula unit fin cell /; 1 is the position of cell / in a
' fixed Cartesian frame (/=0 indicates the origin cell). The wave vector k contains the factor 2.

If f'=fand q’' =q it is convenient to separate the contribution of the origin cell from those of the rest of the
lattice

Jai 92V i R %
(fqz = X sRow grta XP Uk 11+ romrspor - (2.2)

V can be divided into an intramolecular part ¥y, and an intermolecular part Vy. The former contributes only
to the second term to the right in eq. (2.2) by

32V,

aRqui aRqui' =w12§ii' > (23)

where w, is the frequency of isolated-ion vibration I.
V1 is well approximated by a sum of pairwise potentials between centers #n,n’ belonging to two different ions:

V=t lfzq;t /'fén' W(lflj'ﬁqif ')’ 24

where (I'f'q") # (Ifq).
Limiting ourselves to the contribution of V; to D, the elements (2.1) and (2.2) of D are easily related to
derivatives of the two-center potential W with respect to the particles’ Cartesian coordinates x¥#", x/'9"" (g,

T=X,Y,2):

p( )= s s war (0 ()" O ewtinen, (g waitr = 25)

and
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where
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W)= () 122 @7
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W= (UQJZZ’)=82W<0’()’{J(I’Z’) Jox%an xVan | (2.9)
é<f;1?)= g);%f;q (2.10)
and

{=0if i or i’ =translation} (2.11)

(fqn) 92x Yan
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(The condition { } in eq. (2.11) reflects the fact that translations depend linearly on Cartesian coordinates
and vice versa.)

The &'s are known constants which depend on the particles’ masses and positions, while W', W " can be
computed from an analytical form of W.

If W is spherical, like the atom/atom and charge/charge interactions used in this research, W, W, can be
expressed as a function of explicit derivatives of W with respect to the particle/particle scalar distance

Ofgn
S(lf’q’n’)

and of derivatives of S with respect to x%4" etc. These expressions are reported in Appendix A, where it is also
shown that

_( Ofgn ) < 0fgn )
WII ——— ”+ . .
ot <lfrqrnf WUT lf‘qun/ (2 12)

3. Ewald’s formulas for harmonic LD of ionic molecular crystals

In actual LD computations, the infinite lattice sums that appear in the lattice energy expression and in D,
matrix elements (2.5) and (2.6) are truncated at a distance r,,,, where the value of the potential becomes
negligible. For the atom-atom potential, which depends on r =" with 7> 5, Fmay is of the order of 10 A. Electro-
static interactions, instead, depend on r~! and consequently extend to a much wider range. However, a fast
convergence of the corresponding lattice sums can be achieved, following Ewald’s method, by transforming a
direct lattice sum of r~! (and its derivatives) into one sum over the direct lattice of a “damped” function plus
one sum over the reciprocal lattice of an exponential, both rapidly converging.

Let us consider point charges e,,, ¢, , in lattice positions x¥#", x/"¢""_ The distance between them can be
written

xan _xOan—yyy (3.1)
where / is the vector position of cell / and e

; (3:2)

x=xan _xlan
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is a distance inside the cell.
The Coulomb potential between the two charges is (neglecting constants)

0fgn ) ConCyn
W = — .
<lf’q’-n’ [I+x| (3.3)

and the electrostatic energy per cell of a crystal of L cells is

1 €anCyn

- , (3.4)
T o | l+x|

where the symbol >/ means that the term /=0 is to be omitted when (', ¢’, n' )= (f, ¢, n), that is I 0 if x=0,
this excludes self-interaction of charges.
Note that eq. (3.4) includes intramolecular (intra-ion) interactions (see below).
The contribution of the Coulomb potential to the dynamical matrix elements (2.5) and (2.6) is contained in
derivatives (2.7)-(2.9) that can be directly related to derivatives of W with respect to the components of I+ x
-seeeq. (3.1).
~ The following identity is used [17,18]

, 1 : , .
2 (i Pl (I x)]= 3 ey oo (@l x]) exp(ik- (14+3) ]
N h—Fk|2 2
4305 exp(= [h=k| /407) o o lihx]—2am-0/25(x) , (3.5)
Vc h |h—k|

where V is the volume of the unit cell, >, indicates the sum over the reciprocal lattice, & is a vector in the
reciprocal lattice (including the factor 2r), §(x) is Dirac’s delta function and

erfc(y):l—erf(y):ﬁjdtexp(—tz) . (3.6)

«is a positive constant whose value, while not affecting the result, determines how rapidly one or the other sum
converges; to obtain a balanced effect, it is usually taken of the order of the inverse of a nearest-neighbor distance.
Using eq. (3.5) and substituting for shortness

r=Il+x (3.7)
and
r=\r|, (3.8)

one obtains

_ 2 2
vl v Lerfe(ar) + % 5 &R A1 /807) oo (i) — 2120 8(r) (3.9)
7 7 r VC h |h|
9 (1 <y 9 (1 kory 4 35 i(h=k), k12402 ih-
. o, <r>exp(1k r)_; o (rerfc(ar)>exp(,1k r)+ Vc; \h—k|? exp[lh—k|?/4a*] exp(ih-r) .
(3.10)

Y i <l> (ik-ry=3" & (l rf (ar)) (ik-r)
ar,or, \r cxpll 4 or,or, y ore expt

[
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From egs. (3.4) and (3.9) the Coulombic crystal energy is

1 1 — 2 2
== Y eq,,eqr,,r(Z’ erfc(a|l+x|)+ — Ar Y exp(—|hl"/4a”)
2qunf’q'n’ 1

[+x] Ve i%o B exp[ih'x]_za"_(l/Z)é(x)>’
c h#

(3.12)

Note that the singular (A=0) term in the second member to the right of this equation is omitted, being identi-
cally zero due to the charge neutrality of the formula unit.

The lattice sums contained in D, matrix elements (2.5) and (2.6) can also be transformed, using egs. (3.10)
and (3.11). According to these equations, there are two contributions to D,, one arising from the direct lattice
sum, and the other one from the reciprocal lattice sum

D,=DP+D}. (3.13)

As it can be seen from egs. (3.10) and (3.11), the direct lattice contribution DY can be obtained straightly from
egs. (2.5) and (2.6) by replacing W with a “damped” potential U where the following substitution is made:

1 1
;—»;erfc(ar). (3.14)

The reciprocal lattice contributions to eqgs. (2.5) and (2.6) are respectively

Df(ffil'l ')-_Z Canbam Zé<fqn) (f, : ’>exp[—ik-(xof’a'n'_xofqn)]

c nn T’

(h—k)o(h—k).

X ZWCXP[—lh—k|2/4a2]exp[ih-(xof'q'"'_xofqn)] (g £qif [ =f) (3.15)
- _
and
fqi = — fqn f qn) ke (yfan’ _ 4 0fan
D(ﬁzt) CE""""; ( )(n exp[ —ik- (x7" —x7) ]

X Zh: (h—llz)i(’z:k)r CXp[ _ |h_k|2/4a2] exp[ih- (xqun’_xqun)]

VK L Canan [ ) ¢<fqn) (fz") 2 f',‘;’l'; exp[ — |h|?/4a?] exp[ik- (x 7" —x%)]
+ X f(g?,)hzo IZTZ exp[ — |h|2/4a?] exp[ih.(xOfrq'n'_xqun_i_n/z)}:I ' (3.16)

In these equations, the exponential factors placed out of the reciprocal lattice sum arise from the difference
between phase factors in the last terms of egs. (3.10), (3.11) and in egs. (2.5), (2.6).

Like in lattice energy (3.12), also in deriving the last two equations care must be taken about singular terms.
Two cases can be examined separately

(1) In the second and third reciprocal lattice sum of eq. (3.16) the A=0 terms would not be defined. How-
ever, these are identically zero for the charge neutrality condition and have therefore been omitted.

(2) In the first reciprocal lattice sum in eq. (3.16) and in the reciprocal lattice sum in eq. (3.15) the h=0
terms are not defined if k=0. However, they have a finite value. In fact

=u,u,, - (3.17)

where u is a unit vector in the direction of k. The (h=0, k=0) terms can be interpreted as the contribution of



250 G.F. Signorini et al. / Lattice dynamics of KClO,

the macroscopic field [17]. Their effect on k=0 (optical) frequencies depends on the angle between k and the
polarization associated to the mode, which can be 0 (LO modes), n/2 (TO modes), or a generic angle.

One last remark regards intramolecular (intra-ion) interactions (Ofgn, Ofgn’) which, in the present model,
have no physical meaning but are implicitly contained in the reciprocal lattice sums for f* =fand ¢’ =g [first
term in eq. (3.16) ]. If (as it is customary) these interactions are excluded from the direct lattice sum, a correc-
tion Dy must be added to the corresponding D, elements

D,=DP+DR +D; . (3.18)

This correction must balance the second term to the right in egs. (3.8)—(3.10) and is therefore:

()= 2z 2 (g o) o)

0fgn ) (fqn> (fqn) ( 0fgn ) (fqn )]
+ Zr/— ’ . 19
,,,nz;en[ év‘ 7 <0fqn’ \oi )¢ )t Ea: Zo 0fgn’ \oir (-19)
- Where Z', Z" are defined simiiarly to W',W" with
0fgn ) <1 1) 1

7z = A= - =)= S — .

<qun’ Canqn | - erfc(ar) L) =Caneqn erfc(ar) (3.20)
and
r= lefqn’_xqun| . (321 )

In Appendix B is shown that this correction is zero when one of molecular coordinates i, i’ is a translation.

4. Harmonic LD of orthorhombic KC10,

Lattice dynamics calculations of the orthorhombic crystal of KCIO, were carried out using the formulas de-
scribed in the preceding sections.

4.1. Orthorhombic KCIO,: structure and spectral data

Two crystal modifications of potassium perchlorate are known. A cubic, orientationally disordered phase,
belonging to space group O3, is stable at 7> 483 K. Below this temperature, KCIO, crystallizes in an orthorhom-
bic form, with four formula units per cell, belonging to space group D2{. In this phase both ClO; and K* ions
occupy sites of C, symmetry.

The correlation diagram between molecule, site and factor group in the orthorhombic crystal is shown in table
1. Three translations of K* plus three translations and three rotations of ClIO; generate 4 X 9 — 3 =33 optical
lattice modes. 5A,+ 4B, + 5B,, +4Bs, of them are Raman active, 4B,,+ 3B,,+4B;, are IR active, and 4A, are
optically inactive; the three acoustic modes at k=0 have B,,, B,, and B;, symmetry.

In aqueous solution, ClO; is a tetrahedral ion with 4 normal modes of vibration [19]: »,(A,), symmetrical
stretching; »,(E), bending; »;(F,), with prevalent stretching character; v,(F,), with prevalent bending charac-
ter. Each component of these normal modes generates, in the crystal, two Raman active ‘g’ vibrations and two
‘u’ vibrations, all of which are IR active except A, ones.

Lattice bands have a rather weak intensity; however, all predicted bands (except one B, ) have been observed
in polarized Raman spectra at room temperature [13], while IR bands are not resolved in the spectra reported
by the same authors. High resolution Raman spectra in the lattice region have been recently recorded in our
laboratory [20] at 20 K; stronger bands can be unambiguously assigned, in good agreement with the results of
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Table 1

Correlation diagram between molecular (ClOy ), site and factor group in KClO,. T: translations of ClO; ; R: rotations of ClOg ; t:
translations of K*. The plane formed by molecular axes x, z is parallel to the crystallographic a, ¢ plane. The symmetry of translations
along crystal axes and of elements of the crystal polarizability tensor is also shown

Molecule Site Factor Activity

Th Cs Dan

() (aa ,bb,cc) Raman

/ (ab) Raman

\/

(t, t,) A (ca) Raman
(%) g (be) Raman
(RX:R}MRZ> T1 A
u
(ty) A By, (¢) IR
(TX!T}"TZ) T2/ B2u (b) IR
Yy 1)
B, (a) IR

ref. [13], and their widths contain valuable information about the anharmonicity of the intermolecular poten-
tial (see section ).

Internal modes of CIO; have been observed in the liquid and in both solid phases [12,13,21]. In the ortho-
rhombic crystal the ¥, mode has a small dispersion (&~ 1 cm~!) and is in Fermi resonance with the 2v, harmonic
mode [15]. The v, and v, modes show moderate dispersion (5 to 20 cm~!) [12,15]. The very intense v; band
extends over more than 100 cm~—! [12].

Low-temperature decay times of totally symmetric components of all internal modes have been measured
recently by time-resolved CARS spectroscopy [14,22]. These measurements show that population decay plays
a fundamental role in determining phonons’ lifetime.

4.2. Intermolecular potential and lattice modes

Both static and dynamical properties of KCIO, can be satisfactorily reproduced with the atom/atom and
charge/charge potential model described in section 2. Such a model has been used in a molecular dynamics
simulation of the cubic phase of the same compound [23]. The potential parameters used in the present work
were fitted to the lattice energy [24], crystal structure [25], and lattice frequencies [13,20] of the low-T phase.
They are listed in table 2.

The atom/atom part of the potential is in the Buckingham form
W(r)=A; exp(—B,r)—Cyr, ; (4.1)

-

where i and j label atomic species, 4, B, C are constants and r is the atom/atom distance. This part of the
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Table 2 Table 3

Intermolecular potential for orthorhombic KClO,. KClO, minimum energy structure ®

Atom/atom potential: V(r) =Ae 3 —-Cr—¢2 Calculated Experimental
Species A B C E(exp. struct.) —148.788 —143.248®

250 E (minimum) —148.811

Cl-C1 79100 3.305 800 b 5703
0-0 100000 4.070 220 c 2954 72549
K-Cl 53591 3.138 520 cell volume 369.7611 364.4029
K-O 40000 3.520 260
Cl-0 79686 3.688 450 2) Units: kcal mol—! and A.

- ® Ref. [25].. “Ref. [24].
» Units: A (kcal mol-'), B(A-'), C(kcal mol—! A%) [25]. “Ref. [24]

Electrostatic potential: V(r) =q.q;/r
(g in units of proton charge)

¢(K)=+1.00
" g(Cl)=+0.40
¢(0)=—0.35

potential gives the largest contribution to the lattice frequencies, which were indeed found to be particularly
sensitive to K/O and O/O first contacts. The K/O parameters adopted in this work compare will with K/O
parameters used in the literature (see, for example, ref. [26] and references therein).

Effective point charges are placed on the nuclei. The adopted fractional charge on oxygen atomsis —0.35¢, a
value that is in agreement with lattice energy computations of a series of perchlorates [24], and is virtually
identical to the one of the cubic phase simulations [23]. Statical properties, however, are not very sensitive to
this quantity.

The computed lattice energy and minimum energy structure compare very well with experimental data (see
table 3).

The calculated lattice frequencies at k=0 are reported in table 4, along with experimental data. The results
refer to a lattice of 5% 5% 5 cells with an atom/atom cut-off radius of 6 A. A reciprocal lattice of 27 cells with
a~'=5 A was used in Ewald’s sum. Mixing of translations of both ions and of rotations of ClOj; is allowed by
symmetry rules (see table 1). However, many of the modes have a prevalent translational or rotational character
(see fig. 1, where the height of the bars is proportional to the square of the eigenvectors’ components). Polar
(IR) modes show angular dispersion. LO frequencies are systematically higher than TO ones, the difference
being larger for high frequency modes. This TO/LO splitting is probably overestimated by our model, which
does not take into account polarizability effects. Unfortunately, the corresponding experimental data are not
available.

Fig. 2 shows the density of states in the lattice region, calculated with a sample of 343 wavevectors uniformly
distributed in the reduced Brillouin zone (1/8 of the full zone). As expected, vibrations of higher frequency
involve mainly translations of K* (whose mass is smaller than that of ClO; ), while modes below 110 cm~!
have a mixed character. The shape of the density of states is very similar to that of a side-band of v, observed in
the IR spectrum [27], with one central and two side peaks separated by approximately 100 cm~'. Dispersion
curves along the axes of the reciprocal lattice are shown in fig. 3.
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Table 4
Orthorhombic KCIO, lattice frequencies at k=0 (cm~"')

Experimental Calculated
ref. [13] ref. [20] TO LO
A, 140 141.4
116 120.0 102.3
87 92.0 83.1
72 72.6 76.3
52 43.2
B (ab) 138 126.1
114 108.4
73 72.4 80.8
55 63.2
By, (ac) 147 161.5
128 136.0 132.7
112 101.6
97 99.2 95.0
79 76.6 87.3
B3, (bc) 116 110.8
101 93.6
69 76.9
62.9
A, 117.7
81.3
68.5
50.7
B 137.3 189.7
132.3 136.6
111.8 112.1
78.5 83.9
B, 129.3 185.9
101.8 104.7
58.3 65.1
Bi, 144.2 197.6
133.1 133.1
73.2 73.2
64.0 71.4

4.3. Intramolecular potential and internal modes

The vibrational analysis of isolated ClIO; was carried out using a basis of internal coordinates, namely four
Cl-O stretching coordinates and six O-Cl-O bending coordinates.

We used the force constants of table 5, which were fitted to the frequencies of ClO; in solution [13] (see
table 6).

The atomic Cartesian dispacements obtained in this way";vere used as the definition of internal (normal)
coordinates in the lattice dynamics calculation (that is, the £sin (2.5) and (2.6) ), while isolated ion frequen-
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100 (a)

Ag
w Lﬂ
0

B1g || B2g B3g

il Lhekd

141.4 831 432 1084 632 1327 95 1108 769
1023 763 1261 80.8 161.5 101.6 87.3 936 629
100+ (b) B2y
B1U _ _ BSU
Au
1
’- n
5& ﬂ_g_ﬂ
N s_ﬂﬁi k
117.7 685 1373 111.8 1293 583 1331 64
81.3 507 1323 785 101.8 1442 732

Fig. 1. Percent translational /rotational character of lattice modes of KClO, at k=0. The height of the bars is proportional to the sum of
the square of the eigenvectors’ components relative to: K+ translations (mm ), ClO; translations (g1 ), ClO7 rotations (3). Only the
TO component of polar modes is shown.

Fig. 2. One phonon density of states of KClO, in the lattice re-
gion. Bold line: total states. Thin lines: partial densities of states

. = - (the density of states has been weighted with the square of eigen-
0 50 100 150 200 vectors) for K* translations (—), ClO; translations (...),
frequency/cmr! ClOj; rotations (-—).

density of states (arb. units)
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Fig. 3. Dispersion of lattice mode frequencies along the axes of the reciprocal lattice. The curve to the right of the figure is the total

density of states of fig. 2.

Table 5
Intramolecular force constants for KClO,

Type of force Value Units
constant ®

r 7.0 mdyne/A
' 6.5 mdyne/A
ao 1.5 mdyne A
aa’ 0.7 mdyne A
aa” —0.2 mdyne A

) r=Cl-O stretching; & =0-Cl-O bending. ' is opposite to o, while " is adjacient to it (the two bendings share one Cl-O bond).

cies w; in eq. (2.3) were adjusted in order to give the best agreement with observed crystal frequencies.

The perturbation due to the intermolecular potential results in a splitting of internal frequencies which com-
pares very well with observed spectra (table 6). The case of v5 requires, however, a separate discussion. If the
charges of table 2 are used, the dispersion of v is only 10 cm~', while the observed value is about 100 cm ™', It
is well known that the Davydov splitting of very strong IR bands, like this one, is largely affected by the transi-
tion dipole-transition dipole interactions [28,29 ]. Our model contains a dipolar contribution, originating from
the motion of effective atomic charges; however, it does not include any variation of such charges during an
internal motion. Within the same model, a good agreement with the observed splitting can be obtained if an
effective transition dipole is introduced. This can be achieved by increasing the charge on O atomsto —1.14 e.
However, since such a high charge causes lattice frequencies to vary considerably from the values of table 4, only
the block of D relative to v; was computed using this value for the charge on oxygens.
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Table 6
Experimental and calculated internal frequencies of ClO;

Isolated ion Crystal
exp. calc. spec. exp. calc.
a) b)
c) d) TO LO
V4 460 441 A, 463.4 466.2
By 464.8 462.9
By 461.4 463.2
B;, 465.4 466.1
A, 470.1
B 468.5 465.8 465.8
B,, 466.0 463.0 463.0
Bi. 471.5 469.2 469.2
v, 630 603 A, 636.5 635.1
639.2
By 627.5 628.0
By, 634.0 634.1
643.5 639.9
Bs, 627.5 629.9
Ay 624.4
B, 630.5 632.7
g;gg 637.1 637.1
B,. 6375 626.6 628.9
B;, ) 635.4 635.5
639.8 641.9
v, 935 950 A, 943.5 942.6 943.9
By, 943.5 942.1
B 943.0 944.0 944.0
B, } 942.0 943.7 941.8 941.8
1A 1050-1170 1125 A, 1127.5 1077.2
1116.6
By, 1117.1
By 1127.5 1123.8
1148.5 1172.8
Bs, 1089.0 1092.9
A, 1071.0 1075.1
B, 1083.0 1102.3 1107.3
1090.0 1181.6 1181.6
B,, 1116.0 1094.9 1099.9
B, 1149.0 1095.0 1096.9
1182.0 1115.7 1118.7

» CIO; in solution, room temperature [13]. ®See section 4.3. © IR and Raman, 90K [12]. ¢ IR and Raman, 20K [15].

5. Anharmonic LD calculations

»

In sections 2 and 3 we have considered only the harmonic part of the crystal potential. The anharmonic part,
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which contains third and higher order derivatives of the potential is responsible for phonons’ finite lifetime and,
consequently, for the broadening of phonon spectral lines.

The contribution of anharmonic terms to phonon bandwidths can be calculated in the framework of linear
response theory, following a perturbative approach [1]. Calculations involving several molecular crystals have
shown that the lowest order term in the perturbative expansion can account for lattice phonon bandwidths
[30,31,33-37] (for a recent review of theory and results see ref. [32]). This term depends on third derivatives
of V and for the optical mode (j, 0) it can be written [32]

2

Jjo
Yio=36mh 2 Zk: Z Y |B| j'k [(ny+n.+1)0(wjo—wpr—wp_)+2(np —n; ) 6(Wjp— Wikt @i )1,
7T .
" _k
(5.1)
‘where the coupling coefficients B are given by
. jj/0 _l( 53 >1/2 33 52)
j—k T 31\ 2wjpw; i 990 99; x9qj" —k '
and n, is the average occupation number of the state (j, k)
L (5.3)

k= exp (oo kg T) —1°

The widths of lattice bands in KCIO, have been calculated using eq. (5.1) and the potential described in the
previous section. A sample of 64 wavevectors k in the reduced Brillouin zone was used.

The results at T=10 K are compared in table 7 to experimental data. The agreement is very good, and this
indicates that cubic terms of the potential give a good estimate of global anharmonicity. Nor attempt has been
made to reproduce the room temperature results of ref. [13] since these seem to be largely affected by instru-
mental resolution.

We have also investigated the variation of the average coupling coefficient among different phonons. In eq.
(5.1), the squared coefficient can be replaced by its average value { B3 »; furthermore, in the vicinity of zero
temperature all occupation numbers vanish. Thus one has

Table 7
Full width y of some lattice bands of KCIO, (cm~!)

Species Experimental [20] Calculated

(20K) (10K)

w y w Y
A, 72.6 1.6 76.2 0.9
A, 92.0 0.9 83.0 0.4
A, 120.0 1.6 102.3 2.2
By, 72.4 0.9 80.8 1.9
By, 76.6 2.3 87.3 1.2
By, 99.2 1.8 - 101.5 2.0

By 136.0 4.1 132.4 6.1
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Fig. 4. Width of optical lattice bands in KCIO,. Squares: calcu-
lated; crosses: experimental [20]. The solid curve is the profile
Go 50 100 150 200 250 300 350 400 of the two-phonon density of sum states (see eq. (5.4)), in arbi-
frequency/cm™ trary units.
~ 2
7j0~<Bjo> ; Z za(wjo_wj'k_wj”—k) . (54)
JJ

Our results show that in KC1O, ( B?) is independent of the decaying phonon (j, 0), so according to the previous
expression y is simply proportional to the density of sum states at the frequency wjp. This is illustrated in fig. 4,
which refers to modes with k parallel to the crystal b axis. Only the highest frequency mode, of symmetry B,,
(LO), deviates significantly from the pattern of two phonon density of states, indicating that this mode is less
coupled to the phonon bath than the others.

Similar results have been obtained for lattice bands of molecular crystals [33-37].

6. Conclusions

In this paper, we report Ewald formulas for lattice dynamics of ionic molecular crystals using a base of molec-
ular coordinates and a charge/charge potential. The expressions are extensively commented and can be easily
implemented in a computer program. )

The algorithm has been used for the calculation of vibrational frequencies of orthorhombic KClO,. In spite
of its simplicity, the atom/atom and charge/charge potential presented in this research appears to reproduce
well the statics and dynamics of the system. It also remarkable that its parameters differ only slightly from those
used in studies regarding this crystal and its cubic modification.

Third-order terms of the potential account well for the low temperature width of the lattice bands. In analogy
with several molecular crystals, the average third-order coupling coefficient is nearly constant for all lattice
phonons.

Appendix A. Complete expressions for derivatives of the particle/particle spherical potential W

Let us consider the potential between particles a and b
W(ab)=W[S(ab)], (A.1)

where S(ab) is the absolute value of the distance between aand b’
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1/2
S(ab) = < 2 (Xi—xg)2> - (A.2)

Let W, (ab), W (ab) be the first and second derivatives of W (ab) with respect to x4 etc., in accordance
with definitions (2.7)-(2.9) - and

dW(ab)

W'(ab)= 35(ab) ° (A.3)
. _ 9*W(ab)
W (ab)= T3S (A.4)
We have
W (ab) = W (ab) S22). (AS)
ox2
- . 8S(ab) aS(ab) 2S(ab)
Wo (ab)=W"(ab) ——— o W' (a b) oxtox® (A.6)
. . 3S(ab) 8S(ab) , 92S(ab)
W= (ab)=W"(ab) ——= bt axd + W’ (ab) FEr (A.7)
and from eq. (A.2)
aS(ab)  (x5—x?%)
axa — S(ab) ’ (A.8)
8S(ab) _ aS(ab)
axb T ax? (A.9)
9°S(ab)  (x5—x9)(xi-x%)  dn
dxaoxt S(ab)? "~ S(ab)’ (A.10)
3°S(ab)  82S(ab)
dx2ax? ~ ax2axd (A.11)
From eqs. (A.7), (A.9) and (A.11) it results
Wi (ab)=—-W7F(ab). (A.12)

Appendix B. Zero elements of correction (3.19) to the dynamical matrix

Proof of the statement: if one of the coordinates i, i’ in eq. (3.19) is a translation, then the corresponding
correction to Dy is zero.

If i or i’ is a translation the last term in eq. (3.19) is zero according to eq. (2.11); furthermore, in analogy
with eq. (2.12):

._( Ofgn ) ,,+< 0fgn )
Zs (lfq ~Zi i) (B.1)

Thus eq. (3.19) becomes
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qui)_ ,,+(qun) (fqn)[ (fqn’> (fqn>]
b "’(qui' ==2 L %o ) ai ) S0 )60 ) |- (B.2)
If i’ is a translation this quantity is zero because in this case
n/
(5 )=<(). (B3)
T i

i.e. ions move rigidly during a translation.
Finally, if i is a translation, when the summation over atoms in eq. (B.2) is performed the (n=N, N' =M)
term cancels out with the (n=M, n’ =N) term

o (S - )] e
In fact

(e ()
and

é(ftﬁl}l): é(lei\’> . (B.6)

Equations (B.3) and (B.6) do not hold for rotations or vibrations, since during a rotation or vibration differ-
ent atoms or charges undergo different displacements.
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