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The anharmonic frequencies and linewidths of the lattice phonons in a-N, are calculated on the basis of three different
intermolecular potentials which include atom-atom and electrostatic interactions. The distinction between stationary anhar-
monicity and decay anharmonicity is stressed, and the mechanism of energy transfer between the optical lattice phonons and
the two-phonon manifold of the crystal is discussed in detail. The temperature dependence of the phonon self-energy is also
considered. The results thus obtained for a-N, are compared with predictions from previous lattice dynamics, SCP and
molecular dynamics calculations. The calculated anharmonic effects are substantially independent of the adopted potential: the
agreement with experimental data is reasonably good as far as the linewidths are concerned, while the anharmonic deformation
of the potential wells (and thus the frequency shifts) is overestimated. We suggest that, while higher orders in the diagram
expansion are necessary for a proper account of the stationary anharmonicity, the decay anharmonicity limits its effectiveness
to two-phonon processes, thus allowing proper predictions of the phonon lifetimes by using the lowest-order diagrams. Finally,
a-N, is compared to a-CO, and the role played by the translation-rotation coupling is discussed.

1. Introduction

The dynamical properties of condensed molecu-
lar systems are currently analyzed in terms of
pairwise additive effective potentials [1]. Ideally,
one should derive a model for the intermolecular
interactions able to account for the collective dy-
namics, the evolution and decay of the excitations,
and the structural transformations consequent to
changes in the thermodynamical coordinates.

The approximations involved in each method
critically affect the nature of the conclusions. A
model may be satisfactory in describing a specific
situation (or several features of a specific situa-
tion), while neglecting factors which become domi-
nant under different conditions. It is therefore of
great value to explore limits and implications of
different approaches, in order to extract the in-

formation hidden in the hypotheses.

The molecular motions are determined by the
(instantaneous) potential well seen by each mole-
cule as an effect of its interactions with all the
others. In most cases, especially at low tempera-
tures, the molecules are localized in rather deep
potential wells, and the occurrence of spatial sym-
metry allows the distinction between different
“modes” of the system. As long as it is meaningful
to individually characterize these modes, it is also
meaningful to think in terms of “coupling of the
modes” and of “mode decay”. The dynamics of
the system can be described within an “harmonic”
approximation (i.e. as the superposition of individ-
ual excitations), and the decay of each excitation
can be treated by means of perturbative methods.

“At higher temperatures, and generally in the
proximity of phase transitions, “anharmonicity”
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becomes a dominant factor. By “anharmonicity”
we mean two distinct (although usually coexisting)
cases:

(i) Due to the amplitude of the molecular dis-
placements, the potential well seen by each mole-
cule is deformed from a parabolic shape. The
corresponding energy levels are shifted with re-
spect to the harmonic values.

(i) The coupling between the modes induces
finite lifetimes of the excitations above (or below)
the thermal bath, and thus a redistribution of the
total energy of the system. The time-dependence
of the motion deviates from an exp(iwt?) law. Its
Fourier transform is no more a Dirac’s delta func-
tion, but rather becomes a distribution usually
characterized by a peak with finite width, centred
at a shifted “main” frequency.

(i) and (ii) generally coexist, and generate anal-
ogous observable effects (line broadening and
frequency shift) but are not necessarily consequent
on each other: (i) accounts for the stationary prop-
erties of the system, and redefines the nature of
each single mode, while (ii) describes the coupling
between different modes and, thus, the occurrence
of the energy decay. In this sense, it is meaningful
to distinguish between the ‘““stationary” anhar-
monicity (i) and the time-dependent one (ii). In
case of very large couplings, the modes are no
more characterized individually, the very symme-
try imposed to the system is violated, and the
adopted picture loses its meaning.

The intermolecular potentials are usually de-
rived by fitting some experimental data, making
use of heuristic hypotheses (such as the locali-
zation on the molecule of the interaction centres,
and the analytic form of the functions describing
these partial interactions), and adapting their
properties to the symmetry of the molecule in the
solid. It is not surprising that, quite often, a model
which is successful on reproducing certain proper-
ties, does not yield proper predictions once the
physical conditions are changed.

Of great importance in order to test the mean-
ing of a model is its capability of reproducing the
dependence of an observable from the thermo-
dynamical coordinates. Thus, methods which al-
low such analysis are of extreme value.

The present paper is mainly concerned with the

use of anharmonic lattice dynamics methods; the
results of such calculations are discussed and com-
pared to the information obtained from other ap-
proaches.

We shall consider the case of solid nitrogen in
its a phase. Much work has been devoted to this
system which, in many aspects, still poses substan-
tial problems. Solid nitrogen undergoes many
structural transformations by changing both the
external pressure and the temperature. Even at low
temperatures the molecules exhibit rather large
librational motions, suggesting that anharmonic
effects are important also at temperatures close to
the absolute zero.

Many different intermolecular potentials have
been proposed and utilized with various methods
(lattice dynamics, self-consistent and mean-field
approaches, molecular dynamics). While several
features of the system can be accounted for, none
of these approaches has yet provided a globally
satisfactory description of solid nitrogen.

2. Anharmonic lattice dynamics

The lattice dynamics approach to molecular
solids is based upon the expansion of the crystal
hamiltonian into a power series of the molecular
coordinates [1]:

H=T+V,+eV;+eV,+ ..., (1)

where T is the kinetic energy, V' the potential
energy, and e the power expansion parameter.

The elementary excitations of the lattice are the
harmonic phonons (obtained by diagonalizing the
crystal hamiltonian up to the second order in the
coordinate expansion). Phonons interact via the
high-order (anharmonic) terms of the potential.

Optical and neutron spectroscopies, being
dominated by single-phonon scattering, are con-
veniently described in terms of single-phonon
propagators. According to the many-body theory
[2], the single-particle excitation is described by
the statistical phonon propagator G,(w) (where i
labels both the mode and the wave vector). G,
obeys a Dyson equation of the kind [3,4]:

Gi(w)=G'(@)+ G (0)Z(«)G/(w), )
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where G? is the free phonon (harmonic) propa-
gator, and X, =A,+1il; is the proper phonon
self-energy, obtained from the sum of all proper
diagrams (connected diagrams without self-energy
insertions). In practice, the summation should be
truncated once the convergence of 2, is achieved.
According to the linear response theory [5], the
single-phonon bandshape is proportional to:

W(w)=2w, Im[wz—w?—Zwizi(w)]*l. (3)

A correct solution of the Dyson equation (2)
implies a self-consistent approach, where each di-
agram is evaluated making use of the full-phonon
propagator G,. In practice, the diagrams (and,
thus, the various densities of states) are accounted
for on the basis of the free (harmonic) solutions.
This is accurate as long as the corrections to G
are small, i.e. if the convergence of the perturba-
tive expansion is achieved after the evaluation of
the lowest-order diagrams.

The many-body formalism allows the rigorous
distinction between what we have called stationary
anharmonicity (i) and decay anharmonicity (ii).
Actually, two kinds of diagrams can be dis-
tinguished [6]: those which are invariant under
time reversal, and those which are not (in this
respect, one must bear in mind that all phonon
lines are oriented according to their wavevectors).
The first set of diagrams contributes only to the
real part A, of the self-energy, and describes the
effects of the elastic processes (stationary anhar-
monicity (i)); the other set introduces an imagin-
ary contribution iI, as well, and describes the
effect of decay processes. 4, has the effect of
shifting the band peak frequency, while I results
in the broadening of the line, as a consequence of
the finite lifetime of the excitation.

In table 1 are summarized the lowest-order
diagrams, together with their schematic contri-
butions to X,. Those representing decay processes
involve averages over n-phonon densities of states.
Their imaginary part (proportional to the damping
I}) is subject to energy conservation requirements
(Dirac’s delta distributions of sums and dif-
ferences of phonon states), while the resonance are
not involved in the calculation of the real part
(proportional to the shift A,). Stationary processes

imply only averages over the one-phonon density
of states.

Analytic expressions for the (thermally aver-
aged) phonon self-energy are derived in many
standard texts [1,4,6]. Limiting ourselves to the
lowest-order diagrams (a), (b) and (c) in table 1,
we have:
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where i, j, h and k label the phonon modes and
the wave vector, respectively, n; = [exp(hw,/kgT)
—1]7'is the mean phonon occupation number at
the temperature 7, and we have employed the
complex distribution:

lim (x—ie) ' =P(1/x)+imd(x), (5)
e—0"
where P denotes the Cauchy’s principal part, and
8 is the Dirac’s delta distribution.

The term (4b), arising from diagram (b) of table
1 vanishes identically for the centrosymmetric sys-
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Table 1
Contributions to the proper self-energy 3, = 4, +il; ¥

Decay processes
Complex contributions to 2,

Stationary processes
Real contributions to X;

j
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3 ¢: potential expansion parameter; "2 B,-‘j",',), :mth order coupling coefficient; di,(jff',), :m-phonon density of states; A, ..

A Eal BT ..
w + 17 +imd(w; + w; +

=Plw, +

-): complex Dirac distribution. The indexes 7, j, k, and / label both the mode and the wave vector.

At each vertex, the total wave vector is conserved, due to lattice translational invariance.

tems, and in general yields small contributions to
A, when high-symmetry crystals are involved.

The next two terms in the expansion [diagrams
(d) and (e) in table 1, where we have neglected
diagrams analogous to (b)], yield the corrections
due to three-phonon decay and four-phonon elas-
tic scattering, respectively. The contributions aris-
ing from these diagrams are in most cases assumed
negligible. This may be incorrect when large
anharmonicity occurs, so that problems may arise
for the convergence of he self-energy. In such
cases, however, a distinction can be made between
the real (A,) and imaginary (I}) parts of X, In
fact, while A and A® (from diagrams (d) and (e)
respectively) are determined by the whole three-
phonon and one-phonon densities of states, only
the low-frequency region of the three-phonon den-
sity (a minor part of the whole density, dominated
by the acoustic modes) contributes to the damping

'™, owing to the resonance conditions (Dirac’s
delta distribution) contained in its expression. En-
ergy conservation requirements, thus, drastically
reduce the contributions to the linewidth due to
quartic- and higher-order terms of the anharmonic
expansion; as a consequence, the convergence of
the damping I is substantially speeded up with

1

respect to the shift A,.

3. Solid nitrogen

The structure and phase diagram of condensed
nitrogen has been extensively investigated by
means of calorimetric measurements [7], electron
[8] and X-ray [9] diffraction, and Raman spec-
troscopy [10].

Solid nitrogen exists in four crystal forms de-
pending on pressure and temperature: at low tem-
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perature and pressure it is an ordered cubic system
(phase «a, space group Pa3), which transforms into
an ordered tetragonal crystal above = 0.4 GPa
(phase v, P4, /mnm); adjacent to the melting curve
it exists as a disordered hexagonal system (phase
B, P6,/mmc) and, above 4.5 GPa at room temper-
ature, it becomes a plastic pseudo-cubic solid
(phase 68, “Pm3n”).

Under its own vapour pressure, a-N, exists
between 0 and 35.61 K [7,11]: it is a centrosym-
metric cubic crystal belonging to the space group
T¢/Pa3, with four molecules per unit cell. The
molecules are aligned along the (111) body diago-
nals, and the nitrogen atoms occupy positions of
type c. The lattice constant at 0 K is 5.649 A [11]
and the bondlength in the gas phase is 1.0976 A
[12].

The factor group analysis of the k = 0 crystal
modes yields the following representation:

F=A,+A,+E,+E,+3F+3F,

with five Raman-active modes (two internal
stretching vibrations A, and F,, and three libra-
tions E, and two F,), two infrared-active modes
(two translations F, ), two optically inactive trans-
lations A, and E ,, and one acoustic mode F,.

Infrared [13], Raman [14,15] and inelastic neu-
tron scattering [16] spectra for the lattice mode
region have been reported. The Kjems and Dolling
neutron scattering experiment [16] provides infor-
mation on the acoustic dispersions and on the
phonon frequencies at the high-symmetry points
of the Brillouin zone.

NQR measurements of the order parameter for
a-nitrogen [17] show that the librations around the
(111) orientations are characterized by rather large
amplitudes even at low temperature (the order
parameter at 0 K is judged to be f=0.86 [11],
corresponding to a root-mean-square angular am-
plitude of 12°). The order parameter decreases
significantly on approaching the a—f transition.

An extensive literature is devoted to the study
of the librational properties of solid nitrogen [11].
Most theoretical work has been concerned with
potential models able to reproduce the frequencies
of the centre of the Brillouin zone and, possibly, to
account for the structural transformations of the
system.

It is difficult to identify a unitary picture in the
existing theoretical investigations on solid nitro-
gen. The very existence of so many phases clearly
denotes that the dynamics of solid nitrogen is
critically dominated by different factors, whose
relative importance changes with the thermody-
namical conditions.

Since the first calculations by Kohin [18], a
separation between librations and translations has
often been imposed [19,20], stressing the impor-
tance of a libron picture for a-N, [21-23]. Con-
ventional quasi-harmonic lattice dynamics [16,24],
which naturally includes the translation—rotation
coupling, has often been criticized on the ground
of the large librational amplitudes of the nitrogen
molecules.

SCP [21], mean-field [23], time-dependent RPA
(applied to mean-field librational and translational

\states [22]) calculations have been performed, and

the role of anisotropic interactions is acknowl-
edged as a fundamental issue [24-27]. The stabil-
ity and dynamical evolution of the system has
been investigated with molecular dynamics (MD)
simulations for the a phase [28,29] and for the
high-pressure phases [30], and the role played in
this respect by the translation—rotation coupling
has been stressed [31]. More recently, the work by
van der Avoird and co-workers [22,32] emphasized
the inadequacy of quasi-harmonic approaches to
the crystal dynamics even in the ordered phases.

The adopted intermolecular potentials range
from simple atom-atom models [19,33,34] to an-
isotropic models like the Kobashi and Kihara
potential [27] and often include the electrostatic
interactions either as point quadrupoles [21,23] or
as point charges [24,25] located on the molecules.

Recent lattice dynamics calculations [25]
pointed out how in nitrogen, like in most molecu-
lar crystals, the high-order electrostatic multipoles
may critically affect the torsional properties of the
system.

4. Anharmonic lattice dynamics calculations

While many efforts have been made for a proper
account of the molecular motions in a-N,, very
little attention has been payed insofar to the en-
ergy decay mechanisms. Namely, only Kobashi’s
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calculations for a- [33] and y-nitrogen [34] were an
attempt to explain the observed lineshapes in terms
of phonon-phonon anharmonic interactions.
These were derived from an atom-atom potential
model of the Lennard-Jones type, neglecting the
electrostatic interactions. Such model appears
rather poor, since it is not able to stabilize the «
structure of nitrogen, according to subsequent
molecular dynamics calculations [29].

Recently, Berns and van der Avoird [35] pro-
posed an intermolecular potential consisting of
atom-atom and charge-charge interactions based
on ab initio calculations of the N,-N, interac-
tions. The same model was then utilized by Luty et
al. [32] in an SCP calculation of the anharmonic
phonon frequencies. More recently, Murthy et al.
[25] refined a similar potential, paying special at-
tention to the electrostatic terms. They adopted a
molecular charge distribution fitting the multipole
moments up to the 6th order term, yielding a good
reproduction of the experimental phonon frequen-
cies.

We have performed our anharmonic calcu-

Table 2
Intermolecular potentials for a-N, ®

5q L E
electrostatic
7 —2.380 0.0 -1.3262
I’ 5.237 0.373 2.9216
q, —4.047 -0.373 —2.2585
r +0.549 +0.847 +0.672
ry +0.6527 +1.044 +0.7994
atom-atom ©
A 503542 144030 470000
B - 4.037 -
C 377.6 336.3 377.6

¥ Quantities expressed in kcal mole™, Angstrom and elec-
tronic units.

® Charge placed on the molecular centre of mass.

9 The atom-atom interactions have the form A4,/r'2—C/r®
for models 5q and E, and the form A exp[— Br]—C/r® for
model L.

lations for the last two models, here referred to as
model L and model 5q respectively. The parame-
ters characterizing these models are summarized in
table 2.

Fig. 1. One-phonon and two-phonon density of states of a-N,. The two-phonon density of states is defined as d>;,?’ =
iim 8wy — 0;)8(w,_, —w,) andis a function of the phonon frequencies w; and w,,. This and the following plots (figs. 2—-4) have

J

been smoothed and normalized, and are based on model 5q for a-N, (see the text for more details).
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Fig. 2. Averaged third-order coupling coefficient. For each centre zone mode i, the average squared coupling coefficient is defined as

I B2 = [Easm | BO(i0, e, m — k) |28 (w0 = ;) 8(wp_ i = 04)l/

(2, and is a function of the phonon frequencies w, and ). The

plot shown here is an average with respect to all the centre zone modes i.

The phonon self-energy 2(w) was calculated
from expressions (4a)—(4c). Its value is determined
in a complex way by the number of the available
states, the magnitude of the coupling coefficients,
the average phonon populations and the energy
conservation requirements. In the present calcu-
lations, the dampings I"®(w) were obtained from
a grid of 120 wave vectors in the reduced Brillouin

zone (1/48 of the full zone), while the frequency
shifts A®(w)+A®, requiring a longer compu-
tation time, were calculated for twenty points in
the reduced zone.

Although the analytic form of expressions
(4a)—(4c) depends on the details of the vibrational
spectrum of each crystal, similarities can be drawn
for most systems. We payed special attention in

2 /m-i)

Fig. 3. Contribution to the third-order damping due to the sum processes. For each couple of frequencies w; and w, the plot

J

reproduces the quantity | B3| 2¢j(,f)[n ;+n, +1] averaged over all the centre zone modes i. Only the resonant pairs with @, = @, + w,

ijh

contribute to I® (cross sections of the plot represented by bold lines).
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Wy fem™)

Fig. 4. Contribution to the third-order damping due to the difference processes. For each couple of frequencies w; and w,, the plot
reproduces the quantity | B3| 2(lij(,,z)[n ;— n,] averaged over all the centre zone modes i. Only the resonant pairs with v, = w;, — w;

ijh

contribute to I'® (cross sections of the plot represented by bold lines).

analyzing the nature of the third-order decay term
(4a). Figs. 1-4 are, respectively, the plots of the
one- and two-phonon densities of states, of the
averaged third-order coupling coefficients | BS)|?
and of the contributions to I'®(w) due to sum
and difference processes (for more details see the
figure captions).

The two-phonon density of states and the aver-
age coupling coefficient are both characterized by
irregular “plateaux”, due to the contributions aris-
ing from the bulk of the Brillouin zone, with steep

slopes where the acoustic phonons with small wave
vectors are involved.

At low frequencies the asymptotic behaviour of
these quantities may be obtained with the long-
wave method [36]. This yields expressions which
depend on powers of the wave vector k. In particu-
lar, we find that the two-phonon density of states
®? and the squared third-order coefficient | B)|?
show, respectively, a quadratic and linear depen-
dence on the frequency w.

At higher frequencies the effect of the fluctua-

Table 3
Harmonic and anharmonic phonon frequencies in a-N, #
Mode 5q L E K® Exp. ¥
w w+4 w w® w+AD w w+A w w+A4 w
F, 66.2 76.3 71.5 58.5 72.0 62.2 76.0 67.1 80.0 69
E, 49.4 53.0 57.6 442 53.5 46.6 49.5 50.4 54.3 54
F, 44.7 49.9 52.0 40.0 48.4 42.5 46.3 45.5 50.9 48
A, 46.3 50.9 52.4 41.7 48.8 421 46.8 42.6 47.8 47
F, 70.1 70.6 74.3 64.4 70.3 57.8 59.2 45.8 51.8 60
F, 45.8 50.2 50.7 422 48.5 39.5 432 37.8 42.5 36
E, 37.8 47.6 40.8 34.3 395 33.9 435 33.6 40.2 33

3 The frequencies are expressed in cm ™ !; the calculated values refer to the experimental lattice constant a = 5.644 A.

® Calculated for the minimum free energy cell, a = 5.796 A.
©) Kobashi’s results, ref. [33].
9 Neutron diffraction data, ref. [16].

-
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Table 4
Measured and calculated linewidths in @-N, (cm™1)
Mode Exp. ¥ 5q L E KY
° T ar 2r 2r 2r
F, 69 6 11.1 11.6 13.4 12.6
E, 54 - 1.9 25 31 1.9
F, 48 0.5 12 14 1.9 1.3
A, 47 - 1.0 1.1 1.3 0.7
F, 60 5 7.2 7.7 7.9 5.6
F, 36 0.8 1.2 13 1.5 1.3
E, 33 0.8 0.6 0.6 0.7 1.0
® Refs. [13,15].

® Kobashi’s results, ref. [33].

tions of both @ and | B;)|? is smoothed out by
the sums over the modes and the wave vectors.

4.1. Phonon linewidths

The phonon linewidths I',(w) involve averages
along resonant (w;=w,+ w,) cross sections of
| BG)|*®P (see figs. 3 and 4) weighted by the
proper (sum or difference) thermal factor.

The dominant contribution to the sum processes
comes from the bulk of the two-phonon density of
states, with w; roughly equal to w,.

The contributions to the difference processes
arising from the central regions is effectively
reduced by the thermal factors, while the low
populations and the weaker coupling of the peri-
feric regions (involving acoustic phonons) make
them unimportant.

A similar structure for the decay processes was
found in crystalline naphthalene [37] and, indeed,

is expected to be typical for the lattice modes
region of most molecular solids.

In tables 3-5; we report the calculated shifts
and linewidths obtained from the potentials L and
5q, together with the results of Kobashi [33]. As
usual in this kind of calculations (NH, [38], naph-
thalene [37], anthracene [39], a-CO [40]) the
calculated linewidths follow rather closely the pat-
tern of the thermally averaged two-phonon density
of states (see fig. 5). It should be stressed, however,
that these characteristics are no more satisfied
when the internal modes are involved. In this case,
the magnitude of the coupling coefficients, and its
variations over the Brillouin zone, critically affect
the results, as found in crystalline benzene [41]
and naphthalene [42].

Two relevant conclusions for the dampings I'(w)
can be pointed out by comparing the results of
table 4:

(1) In spite of the differences between the poten-

Table 5
Calculated anharmonic shifts in a-N, (cm™!)
Mode 5q L E K?

Vi At A At yig At 4 At
F, -51 15.2 -53 13.8 -6.1 16.6 —-4.1 17.0
E, —-6.6 10.2 -71 9.2 -79 11.3 -73 11.3
F, —4.5 9.7 -4.38 8.8 -5.5 10.3 -53 11.0
A, —-3.8 8.4 -4.0 7.6 —-43 9.8 —-4.6 10.1
Fg -6.3 6.8 -73 6.5 -6.1 8.2 —-8.5 14.8
Fg -72 11.6 -7.6 11.3 -84 13.8 —-8.5 13.8
Eg —-3.8 13.6 —-4.2 13.2 ™43 16.1 -6.3 134

# Kobashi’s results, ref. [33].
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o

2% 32 40 48 56 6% 72 80

88 104 112 120
cm-!

Fig. 5. Total (sum and difference) two-phonon density of states for a-N,. The width of the phonon bands is represented by vertical

lines of height proportional to the calculated linewidth.

tial models and between the calculated harmonic
frequencies, the three potentials predict very simi-
lar linewidths.

(ii) The calculated linewidths compare satisfac-
torily to the available experimental data (table 4).
The overall agreement results positively better than
obtained in other systems, like ammonia [38],
naphthalene [37] and anthracene [39].

4.2. Frequency shifts

An evaluation of the results for the anharmonic
frequency shifts cannot be done in the same terms
as for the linewidths, since no experimental ob-
servable can be directly related to A(w); the Ra-
man spectra measured by Medina and Daniels
[15], however, show that the librational frequencies

decrease slightly by increasing the temperature at
constant volume. Negative anharmonic shifts are
then expected at 5 K, at least for the librational
modes.

The results obtained by us for the models L and
5q are collected, together with the results of
Kobashi’s calculations, in table 5. As already found
for the dampings, the differences between the three
calculations are rather small: the cubic shifts A®
are in all cases negative, while the quartic contri-
butions A® are all positive, and in general much
larger in their absolute value. As a result, large
positive shifts are predicted for almost all the
optical phonons, and positive temperature shifts
are calculated up to 40 K.

The results obtained for the model L apparently
contradict to the calculations by Luty et al. [32],
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who reported self-consistent phonon frequencies
lower than the harmonic values. However, it must
be stressed that the SCP frequencies were calcu-
lated at a unit cell volume larger by 6.3% than the
experimental volume; if the harmonic frequencies
are calculated at the reduced density, large positive
shifts are obtained, similar in value to the A®
shifts obtained with the perturbative method (the
SCP method in fact corresponds to a first-order
perturbative approach, and does not include the
contributions from odd anharmonic terms).

A remarkable result of our calculations is that,
independent of the potential model adopted, the
perturbative method gives positive anharmonic
shifts for all the k = 0 modes; the overall agree-
ment of the calculated and observed frequencies is
then even worse than in the harmonic approxima-
tion, particularly for the librational modes. As
already mentioned, such a behaviour is a conse-
quence of the very large quartic anharmonicity.

We attempted to improve the agreement by
modifying the intermolecular potential parame-
ters: with relatively small changes in the charge
distribution and in the atom-atom parameters
(potential E in table 2), we obtained lower
harmonic frequencies maintaining a good fit to the
unit cell volume and to the lattice energy. How-
ever, the results of the anharmonic calculations
with potential E (tables 4 and 5) are not encourag-
ing: the softening of the interaction potential
causes larger librational amplitudes, resulting in
larger anharmonic shifts and linewidths. It appears
unlikely that remarkable improvements of the
calculated anharmonic frequencies can be ob-
tained by acting on the parameters of the inter-
molecular potential.

4.3. Thermal dependence of the self-energy

The self-energy (4) depends explicitly on the
crystal temperature through the phonon occupa-
tions numbers. At high temperatures (i.e. kg7 /A
larger than the lattice frequencies) the occupation
numbers, and consequently the self-energy, be-
come linear in 7. At low temperatures (kg7 /4 in
the region of the acoustic frequencies) only the
acoustic modes are appreciably populated. In this
case, the contributions due to these long wave

modes may be evaluated by substituting the
asymptotic (k — 0) expressions into (4) and re-
placing the sum over the wave vectors with an
integral whose range, for 7— 0 K, may be ex-
tended to infinity [43]. The self-energy takes the
form:

3(T )« T* + constant, (6)

where the constant (originated from the Planck’s
statistics of the phonon distribution) accounts for
the effect of the zero-point phonon bath. Actually,
it is experimentally observed [44,45] that, for T — 0
K, the phonon linewidths approach a finite value
with a power law. In fig. 6 we report the tempera-
ture dependence of the linewidths for one lattice
mode of a-N,: the line a is calculated according to

2T (cm))
16.

14.

12,

10.

4. 12. 20. 28. 36.T(K)

Fig. 6. Thermal dependence of the phonon linewidth for the
F; mode of a-N,. Only the effect of the temperature over the
phonon populations is taken into account (no thermal expan-
sion). The line a is derived from expression (4a), where the
phonons obey the Planck’s statistics; below 20 K it is evident
the effect of the zero-point phonon bath, yielding the approach
to a finite value with a T* law (the dotted line is a fit of a
quastic to our calculations). The line b, on the other hand, is
obtained by imposing the Boltzmann statistics to the phonon
populations, thus yielding the classical prediction.
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expressions (4), while the line b has been calcu-
lated by substituting the Boltzmann to the Planck
statistics, thus obtaining the classical prediction
where no effect of the zero-point bath is involved,
and which can be compared directly to the low
temperature MD results.

In analyzing the theoretical predictions, one
must not forget, however, that the magnitude of
the phonon self-energy, and its thermal depen-
dence, is determined by the details of the whole
phonon distribution. Moreover, when large inter-
vals of temperature are considered, other factors
(e.g., the lattice expansion) may affect the self-en-
ergy behaviour, by introducing a thermal depen-
dence of the anharmonic couplings. This calls for
_caution when oversimplified models are used to
account for the observed data, in order to avoid
the need of meaningless hypotheses [45].

5. Discussion

The results of the anharmonic lattice dynamics
calculations reported in the present paper, and
those obtained by Kobashi, suggest that the
anharmonic effects in a-nitrogen do not depend
substantially on the adopted potential. This of
course is true within the limits of the simple mod-
els utilized in the present calculations: relevant
changes in the potential, like the inclusion of an-
isotropic atom-atom interactions (that have been
shown to be important for other linear molecules),
or a different analytic form of the repulsive part of
the atom—atom functions, corresponding to a more
realistic description of the hard-core interactions,
may lead to different results. In such cases the
possibility of a substantial improvement of the
agreement cannot be ruled out.

The agreement with the experimental data is
reasonably good as far as the linewidths (depend-
ing on the cubic anharmonicity only) are con-
cerned; on the other hand, the experimental evi-
dence indicates that negative anharmonic shifts
should be expected, in contrast with the results of
our calculations.

Other methods, different from lattice dynamics,
have been previously employed in order to derive
the anharmonic phonon frequencies for a-nitro-
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gen. As mentioned before, van der Avoird et al.
[22] utilized the same L potential of table 2 to
calculate the librational and translational energy
levels of the crystal with the time-dependent RPA.
The method, based on the calculation of the
single-libron potential well in the mean field of the
other librating molecules, does not require any
expansion of the intermolecular potential and does
not imply any approximation as far as the poten-
tial energy is concerned. As a consequence, it
avoids all the problems related to the convergence
of the potential energy expansion series, that affect
any lattice dynamics treatment; on the other hand,
it cannot account for the decay of the vibrational
energy. This method gives frequencies lower than
the harmonic frequencies calculated with the same
potential, in agreement with the experimental evi-
dence.

A similar result is obtained by Cardini et al. in
a molecular dynamics (MD) calculation utilizing
the 5q potential [29]. Of course, MD being a
classical method, the vibrational amplitudes de-
crease with the temperature and become vanish-
ingly small in the vicinity of 7=0. At 5 K, the
calculated vibrational amplitudes are too small
and the molecules “see” the very bottom of the
potential wells; as expected, the phonon frequen-
cies obtained from the simulation are identical to
the harmonic values. However, information on the
anharmonicity of the system can be obtained by
rising the temperature of the computer experiment
at constant volume: above 25 K the molecular
displacements are large enough to sample regions
of the potential well with appreciable anharmonic
deformations, and small negative shifts of the pho-
non frequencies are obtained, in qualitative agree-
ment with the experiment and with van der Avoird
results, and in contrast with our and Kobashi’s
predictions.

At first, these results seem to point out the
inadequacy of the perturbative approach in the
a-nitrogen crystal. The values given in table 5 for
A® and A® by themselves confirm this conclu-
sion: 10-15 cm™! shifts cannot be considered as
“perturbations” to harmonic frequencies of about
50-70 cm™~!, and suggest that the convergence of
the diagram expansion is far from being reached
after the first-order quartic term. Higher-order
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terms, neglected in the present calculation, might
yield negative contributions to the frequency shifts,
thus compensating for the very large positive ef-
fects of the terms depending on V,. On the other
hand, the linewidths, depending in our treatment
on the cubic anharmonicity only, agree satisfacto-
rily with the experiment. A possible scenario ex-
plaining this apparent contradiction is the follow-
ing:

(i) The linewidth is correctly accounted for by
the cubic terms only: the potential model and the
simple perturbation approach give the correct order
of magnitude for the coupling between the differ-
ent phonons. The importance of higher-order (four
phonons and more) coupling processes, that in
principle could be not negligible in view of the
large values of the corresponding terms of the
potential expansion, is drastically reduced by the
resonance conditions (Dirac §-functions). The rel-
evant three-phonon density of states in the region
corresponding to the k=0 phonons of nitrogen,
ranging between 30 and 70 cm ™, is in fact rela-
tively small and involves essentially acoustic pho-
nons, whose coupling to the optical phonons is
known to be small.

(ii) On the other hand, truncating the potential
expansion at the quartic term prevents from repro-

ducing correctly the “single phonon” potential
well, overestimating its anharmonic deformation
and hence predicting too large shifts with respect
to the harmonic frequencies.

A final issue worth considering is the role played
by the translation—rotation coupling. Some insight
can be drawn by comparing solid nitrogen to solid
carbon monoxide, two systems traditionally con-
sidered very similar in their behaviour. We have
recently proposed a model for condensed CO which
was first derived from lattice dynamics calcula-
tions for the cubic phase a [40], and subsequently
employed in constant pressure molecular dynamics
calculations for the same phase, for the plastic
phase B and the liquid phase [46]. When compared
to a-CO, a-N, is characterized experimentally by
distinctively lower frequencies and narrower lines.
The disordered phase B8, in which the N, mole-
cules undergo a continuous motion around the ¢
axis, exists for a rather large temperature interval
(from 35.6 to 63.1 K at vapour pressure), while the
analogous phase of CO exists only between 61.5
and 68.1 K. This likely denotes the effect of
stronger translation—rotation couplings in this
latter system, due to the asymmetry of the CO
molecule, allowing to easily overcome the rota-
tional barrier only when the system is close to

Table 6

Anharmonic lattice dynamics of a-N, and a-CO

Mode @ harm A3 AA 2Fanharm wexp 21—‘exp
a-CO @

F 114.6 —5.6 6.8 220 90.5 7

F 84.9 -11.6 8.9 9.6 85.0 12

E 72.7 -6.0 9.6 8.6 64.5 -

F 59.2 -7.8 14.1 13.4 58.0 -

A 48.3 -4 5.1 2.6 - -

F 46.4 =75 7.8 8.0 52(49) 5()
E 43.4 -11.1 11.4 7.7 44.0 -
a-N,

F, 66.2 -5.1 15.2 11.1 69.0 6
E, 49.4 —6.6 10.2 1.9 54.0 -

F, 44.7 —45 9.7 1.2 48.0 0.5
A, 46.3 -38 8.4 1.0 47.0 -

F, 70.1 -6.3 6.8 7.2 60.0 5

F, 45.8 -72 11.6 12 36.0 0.8
E 37.8 -38 13.6 0.6 33.0 0.8

e

2 From ref. [40].
® Present results for model 5q.
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melting. Actually, a-CO is characterized by a
strong mixing of the modes. The stability of the
cubic phase was found to be largely affected by
the magnitude of these couplings, reflected also by
the anomalous acoustic dispersion [40,47], absent
in a-N,.

In table 6 our anharmonic results for both CO
and N, are compared. In both systems the centre
zone phonons decay prevalently towards k # 0
modes of mixed rotational-translational character.
The stronger couplings in the less symmetric CO
give origin to a higher decay rate (and, thus, to
larger linewidths) when compared to the N, case,
as found experimentally. A remarkable difference
between the two calculations is in the magnitude

of the quartic shifts, which in «-CO are of the
same order (and opposite sign) as the third-order
ones, yielding rather small corrections to the
harmonic frequencies. If one considers the higher
frequencies characterizing carbon monoxide, we
may conclude that the dynamics of the CO mole-
cules (while being dominated by decay processes,
due to the larger translation-rotation coupling of
the modes) is less affected by the stationary
anharmonicity than the nitrogen case. This is a
further indication that the similarity between these
two systems is less extensive than usually assumed.
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