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This paper presents an efficient method for computing high-order corrections to pbonon linewidths in
crystals. Traditional algorithms involve nested sums over intermediate phonon states, whose computa-
tional time grows exponentially with the perturbation order. This nested-sum difficulty is overcome in
the present study for the special case of the double-vertex diagrams by writing the corresponding
linewidths in a simple form and exploiting a recursive algorithm for weighted phonon densities of states,
which requires a time linear in the perturbation order. Using this method, we computed, up to order 10,
the linewidths due to the double-vertex diagrams for the a-nitrogen crystal. Our calculation shows that
accurate estimates of high-order linewidth corrections can be obtained even for systems as complex as
molecular crystals.

I. INTRODUCTION

Homogeneous line broadening in crystals is due to the
anharmonicity of the interaction potential. In harmonic
solids, the dynamics is described by a set of independent
oscillators, the normal modes of vibration. In second
quantization these vibrational excitations are described in
terms of noninteracting bosons (phonons). In anharmon-
ic solids, phonons are no longer independent, i.e., they
can exchange energy. The energy transfer among pho-
nons is responsible for the finite lifetime of vibrational ex-
citations, and thus for the occurrence of line broadening.

Experimental linewidths for a number of molecular
crystals have been measured by coherent anti-Stokes Ra-
man spectroscopy (CARS) and high-resolution Raman
techniques (for a review of the experimental studies see
Refs. I and 2). The interpretation of the observed
linewidths in terms of decay mechanisms is generally
based on the temperature dependence of the linewidths.

Theoretical linewidths can be computed by perturba-
tion expansion of the one-phonon Green's function.
The high-temperature linewidths are directly proportion-
al to the temperature if the Green's function is restricted
to the lowest order (A, order) in the Van Hove perturba-
tion parameter k. ' Nonlinear temperature dependences
imply decay mechanisms at least of order A. . It is gen-
erally believed that mechanisms of order higher than A,

play a major role in the broadening of phonon lines,
since nonlinear temperature dependences have been often
observed in a variety of solids. ' However, a clear under-
standing of the high-order phonon interactions is still
lacking.

So far, calculations on real systems have been done at
the lowest perturbation order (A, ). ' ' Calculations in-
cluding higher-order terms are still at a pioneeristic level,
due to the huge computational cost. The A, corrections

have been computed either using drastic approxima-
tions' or simple models such as linear chains of atoms"
or molecules. ' In all cases they have been found to yield
the largest contribution to the linewidths even at relative-
ly low temperature. It is, however, still a matter of dis-
cussion whether for real systems convergence of the self-
energy is reached at the order k in the whole tempera-
ture range of existence of solids. Rough estimates of the
high-order self-energy have been suggested for linear
chains, ' but no attempt has been made so far to extend
the perturbative approach beyond A. for molecular
solids.

In this paper we address the problem of computing ac-
curate estimates of some high-order corrections to the
linewidths in real molecular crystals. The large computa-
tional cost of high-order corrections is due to the fact
that they involve multiple wave-vector sums. These sums
must be evaluated by sampling a number X of wave vec-
tors in the Brillouin zone. The computing time for n-
nested sums grows exponentially as N", quickly exceeding
any reasonable limit.

This problem is partially overcome in this paper by ex-
ploiting previous works. ' ' The main results of Ref. 20
is a very eKcient recursive algorithm for computing the
multiphonon density of states, which requires a linear
time proportional to Nn. The algorithm is applicable to
weighted densities of states with a "factorized" weight
function. Reference 21 is based on a new interpretation
of the phonon operators. In this picture the annihilation
of a phonon with energy co (and wave vector k) is de-
scribed as the creation of an "antiphonon" with negative
energy —co (and wave vector —k). Such a description
yields extremely compact expressions for the anharmonic
corrections to the self-energy.

The perturbation expansion of the Green's function is
best expressed as a sum on diagrams. In this work we

11 124 1993 The American Physical Society



47 HIGH-ORDER SELF-ENERGY IN MOLECULAR CRYSTALS 11 125

have selected a physically important subset of diagrams,
the double-vertex diagrams (Fig. 1). The double-vertex
diagrams seem to dominate the decay of high-energy vib-
rons. ' ' Moreover, diagrams of this kind often appear
as self-energy insertions in more complicated irreducible
diagrams. The behavior of the double-vertex diagrams is
therefore of paramount importance for the understanding
of the overall convergence properties of the complete
self-energy series. In the phonon-antiphonon picture, the
linewidth due to these diagrams has a particularly simple
representation involving weighted density of states gen-
eralized to allow both positive and negative phonon ener-
gies. ' The weight functions are a combination of
thermal factors and potential derivatives and, unfor-
tunately, are not factorizable, so that the recursive algo-
rithm cannot be used. We have succeeded in expressing
the thermal factor in terms of factorized functions and
chosen an approximation in which the potential deriva-
tives are factorized.

Recently, the linewidths of the vibron in the a phase of
nitrogen have been measured with great accuracy as a
function of temperature by means of high-resolution Ra-
man ' and CARS techniques. The linewidths of the
Raman-active lattice modes are also available at several
temperatures. ' Therefore, we have chosen nitrogen as
a benchmark for our method. The linewidths up to the
order A,

' have been computed.
The paper is organized as follows. In Sec. II we derive

a general expession for the double-vertex diagram of or-
der n and describe how the thermal factors are factor-
ized. In Sec. III we describe the calculations of the high-
order contributions to phonon linewidths in nitrogen.
First, we outline a simple numerical method for estimat-
ing the anharmonic coupling coefficients, and discuss
how the thermally weighted densities may be efficiently
computed. Then, the phonon linewidths are obtained by
multiplying the average scattering coefficients by the
thermally weighted density of states. The temperature
behavior of the computed linewidths for all the Raman
modes (the internal vibrons and the lattice phonons) is
compared to the experimental data in Sec. IV. Com-
parison to experiment is discussed in terms of decay pro-
cesses.

II. THEORY

The spectrum of a phonon system is described by the
one-phonon Green's function G ( bk;, b z, co ). The
operator bz; and its adjoint bI„annihilate and create pho-
nons with wave vector k and unperturbed (harmonic) en-
ergy cok;. The index i distinguishes different phonon
branches with the same wave vector. When no ambiguity
is possible, we will replace each pair of indices ki with a
single label: q=k i and —q= —k —i . In this work
we adopt the formalism of Ref. 21, and allow both posi-
tive and negative signs of the branch indices. The posi-
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FIG. 1. Double-vertex diagrams.

tive or negative sign distinguishes between annihilation
and creation operators bk; and bk,-.

b&;—=b j, , fori &0. (2.1)

For anharmonic solids the Green's function for the
q —=k i phonon has the form

G(b, b;co)= 1

CO CO X
q q

(2.3)

where X =6 +i I is the phonon self-energy given by
the sum of all irreducible diagrams. The real part 5
represents an energy shift whereas the imaginary part I

q
is the inverse of the phonon decay time, and represents an
energy damping. The phonon linewidth is twice the
damping I

As shown in Ref. 21, the Green's function may be com-
puted using the equation of motion formalism. ' An
infinite chain of coupled equations is obtained with an
iterative procedure. In this work we truncate the chain
after the first two iterations and restrict our attention to
phonon-scattering processes represented by double-vertex
diagrams. A double-vertex diagram is made of two ver-
tices of order n connected by n —1 pho non lines.
Double-vertex diagrams of this kind are shown in Fig. 1

up to the order k
The contribution I'"' to the damping I, due to the

double-vertex diagram of vertex order n (with n ~ 3), is of
perturbation order '" '. In the Appendix it is shown
that the contribution I'"' to the damping is

The phonon energy is positive or negative according to
the sign o, —= sign(i) of the branch index:

(2.2)

I'"'(co~k~)=n(n —1)!n g V~&. . . „V ~ z. . . „([bz . b„,b ~. . . „])
2'''7l

X5[co~ —(co&+ +co„)]5[kq—(kz+ +k„)] . (2.4)
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The angular brackets denote a thermal average over the
harmonic canonic ensemble and Vq2. . . „ is the nth order
anharmonic coupling coefficient. The 5 function
5[k —(kz+ +k„)] indicates that the coefficients V
vanish if the total momentum is not conserved. By sum-
ming on both positive and negative branch indices, Eq.
(2.4) describes any combination of phonon creation and
annihilation processes in which phonon q decays with
conservation of energy and momentum. In other words,
all combinations of phonons and antiphonons are con-
sidered.

Equation (2.4) has the form of a weighted multiphonon
density of states, involving n —1 phonons. As shown in
Ref. 20, such a density of states may be computed in a
time which is linear, rather than exponential, in n if the
weight function

V ~. . . „V ~. . . „([b~ . b„,b ~ b „])
is in the factorized form iiif(cor, ki). In the follow-
ing we will show that the thermal average
( [bz b„,b z

. b „]) can be expressed in this form,
while the coefficients V can be factorized under some ap-
proximation.

Expanding the commutator, the thermal average in Eq.
(2.4) becomes

([b . . b„,b b „])=~ (g, +1)
1=2

(2.10)

Equation (2.10) is a generalization of the thermal factor
iii(nl + I ) —i'll ni obtained by Nitzan et al. for multi-
phonon decay. Nitzan's factor can be obtained by re-
stricting Eq. (2.10) to positive branch indices (all crI =1).
In this case the contribution to the linewidths is restrict-
ed to "down conversion" processes, in which the excited
phonon decays by transferring all its energy co to other
phonons of energy cu2, co3, . . . , such that
co c02 + c03 + . Down conversion processes are the
only e6'ective mechanism in the low-temperature limit.
Equation (2.10) is the thermal factor for a general multi-
phonon process, where the excited state may also absorb
energy from the phonon thermal bath, allowing any com-
bination of phonons and antiphonons (i.e., including "up
conversion" processes).

Both terms in the thermal factor (2.10) are now in fac-
tor form. The next step in the transformation of Eq. (2.4)
is factorizing the anharmonic coupling coefficients
~q2-

As discussed in many standard texts, ' ' the coupling
coefficients are given by

([b~ b„,b ~ b „])=(b~ . b„b ~
. b „)

—(b ~ b „b~. . . b ).
Cq2 n

q2 n
) i/2n!(crqcoqcrzcoz ' cr„co„)

(2.11)

(2.5)

In the limit of large samples, Wick's theorem holds.
In this case, among all possible pairing schemes, the only
non-negligible contribution to the thermal average in Eq.
(2.5) is

(bI bi ) =n(coI ), for 1)0

(b Ib i)=n(co )+II, for l(0 . (2.7)

The two cases of Eq. (2.7) may be cast in a unique expres-
sion as

([b~ b„,b ~ b „])=(b~b ~) . (b„b „)
&b,b, ) —. . -(b „b„& .

(2.6)

The averages in Eq. (2.6) may be evaluated by going back
to the traditional b, b notation:

The factors o.
1 take care of the fact that the phonon ener-

gies leo& I =crico& must be positive in Eq. (2.11). The
Cq2 n coefficients are the derivatives of the crystal po-
tential with respect to the normal coordinates, so that
they depend in a complicated way on the details of the in-
teraction potential, and thus on co1 and k1. On the other
hand, if coefficients are assumed to be uncorrelated to the
thermal factor ( [bz b„,b z b „]), they can be
replaced in Eq. (2.4) by their average value. Such an as-
sumption implies, through Eqs. (2.9) and (2.10), that the
coupling coefficient should not be correlated to the pho-
non energy. This appears to be reasonable, with one ex-
ception. As discussed in Refs. 15, 32, and 33, and shown
in Sec. III, the coefficients C 2. '. . „ tend linearly to zero as
one of the phonon energies tends to zero (i.e., an acoustic
branch is involved); otherwise they depend weakly on the
energy of the optical phonons. Therefore, we need an ap-
proximation that reproduces this behavior. We have
ChOSen tO repreSent Cq2 n aS

C1
(b Ibi & =n(leo)I)+ = (gi 1),

2 2
(2.8)

0 1CO1

Cqq. . . „=C„(q)Q,
1=2 X ~1~1

(2.12)

where n(co)—:1/(e r" —1) is the Bose occupation num-
ber and we have defined the odd function g1 of the pho-
non energy co1 as

Here, (cricol ) is the average frequency for the branch ii
This equation may be regarded as a definition of C„(q),
whose value is obtained by averaging the square of (2.11)
over phonons 2, . . . , n:

gi
=—cr i [2n ( I cog I

) + 1 ] = (2.9)
C„(q)= & IC„.. . „I'&'" (2.13)

Using Eq. (2.8) the thermal average (2.6) becomes (each cr I co& /( cr i col ) factor obviously averages to 1).



47 HIGH-ORDER SELF-ENERGY IN MOLECULAR CRYSTALS 11 127

Equation (2.12) is probably the simplest choice, which
gives an approximately constant Cqz p of the correct
magnitude if no acoustic phonon is involved and has the
correct behavior for low-frequency acoustic phonons.
We tried more complicated forms, which when applied to
nitrogen gave essentially identical results.

Using Eqs. (2.10) and (2.11) and approximation (2.12),
expression (2.4) for the n-phonon damping becomes

where

q

X [G'+'(roq, kq) —G("'(ro, kq )], (2.14)

G(g'(ro, k) = g 5[co—(co2+ +ro„)]
2'''7l

n

X5[k—(k2+ . +k„)] g g+ (ro& ),
1=2

(2.15)

I
g~(roi ) = (gi+1)

2 CT(coi
(2.16)

III. CALCULATIONS: THE CASK OF NITROGEN

We have used Eq. (2.14) to compute the linewidths of
the Raman-active modes in a-nitrogen up to vertex order
n =7 (i.e., A,

'
) and compared the result to the experimen-

tal data. Solid nitrogen in its a phase crystallizes as a cu-
bic lattice (space group Pa 3) and is stable in the tempera-
ture range 0—36 K (Ref. 35). Due to the presence of the
center of inversion the phonons exhibit mutually ex-
clusive Raman or ir activity. The one-phonon density of
states has a very simple structure, the region of the lattice
modes (0—70 cm ') being well separated from the sharp
peak (2328 —2329 cm ') due to the internal branches.

The G(+'(ro, k) functions are weighted densities of states
with a factorized weight. As shown in Ref. 20, such den-
sities may be efficiently computed one after the other us-
ing the recursive relation

G(g'(ro, k)= g G~+ "(ro—
cot, ;,k —k„)gg(roj, ; )

&n"
(2.17)

The recursive algorithm was originally conceived for
positive energies. However, the sign of the energy is not
really used in Ref. 20. Hence, Eq. (2.17) holds exactly in
the same form for densities of sum and difference states,
i.e., allowing both positive and negative energies. Using
Eq. (2.17), each additional density G(g' can be computed
recursively with a constant computational cost from the
previous density G+ ". The lowest-order density G+' is
computed directly from Eq. (2.15). The n-phonon damp-
ing is then obtained as a difference of G'+' and G'"' densi-
ties (Eq. 2.14). The recursive relation (2.17) yields the
weighted densities for all k vectors, since these densities
are required in each recursive step. As shown in the next
section this gives the possibility of studying the depen-
dence of G(+ '(ro, k) on n, ro, and k.

A. Average coupling coe%cients

The relevant coefficients for k=0 optical phonons are
C„(q) with q

=Oi T—hey .can be obtained from a statistical
sample of anharmonic coefficients Cq2. . . „[cf. Eq.
(2.13)]. In principle, the nth order coefficients can be
computed starting from the analytical form of the in-
teraction potential; however, the expressions for C be-
corne very complicated as n increases. We chose to cal-
culate the coeKcients in a simpler way by numerical
derivation of second-order coe%cients C12.
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FIG. 2. Average third-order coupling coefficients C3 (q)
(cm '

) for Raman modes as a function of the wave-vector
modulus. Solid lines refer to coefficients
C3(q, k) =N, ~, g;; ~C, (Oq, ki„—kiz)~ averaged over the op-

tical branches i &, i 2. Dashed lines refer to coefficients
C3 (q, k) =N, ~,
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~
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1

branch i 2.

With such an energy distribution, as we shall discuss in
detail later, the double-vertex diagrams should give the
main contribution to the linewidths of the vibron.
Several potential models for nitrogen are available in the
literature. ' ' ' We have used the potential model of
Murthy. In this model the intermolecular interactions
are represented by a Lennard-Jones atom-atom potential
plus an electrostatic term represented by point charges
along the molecular axis. We add a harmonic in-
tramolecular potential, with a constant of 2328 cm
The potential reproduces satisfactorily the structure of
the solid at 5 K (Ref. 37) and the harmonic frequencies at
zero wave vector and at the Brillouin-zone boundary.
All calculations have been performed at the extrapolated
0 K structure.

As shown by Eq. (2.14), the damping I'"' is controlled
by, (1) the magnitude of the average coupling coefficient
C„(q), and (2) the thermally weighted density of states
resonant with co and k, i.e., the factor

G'"'(co, k):—G(+'(co, k) —G("'(co,k) .

The calculation of C„(q) and G("'(co,k) are two distinct
and independent computational problems, which deserve
to be discussed in some detail prior to presenting the re-
sults for the linewidths in e-nitrogen.
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TABLE I. Average anharmonic coupling coefficients C„(q) for the Raman modes in a-nitrogen.
The values in parentheses are the harmonic frequencies (cm ') predicted by Murthy's model (Ref. 36).
The C„(q) coefficients are in units of cm

Tg(2329)

1.53 X 10
6.76X10'
2.45 X 10
9.66 X 10
3.64X10'

Ag (2328)

9.98 X10'
2.33 X10'
1.53 X10'
7.01 X 10
6.14X10'

Tg+(70)

6.68X10'
8.09X10'
4.41X10'
3.39X 10
1.54 X 10

Tg (47)

5 ~ 36X 10
4.83 X10'
1.48 X 10
1.08 X 10
6.42 X 10

Eg(38)

4.51X10'
2.27 X 10
2.68 X10'
6.01 X 10
6.34 X 10

Coefficients of the type C, zqq q
where 1 =kiI,

2=——kiz, and q —=Oi, can be easily obtained by comput-
ing the numerical derivatives of C,z with respect to the
normal mode q. In practice, this amounts to computing
the harmonic dynamical matrix C&z for different none-
quilibrium positions of the atoms in the crystal, along the
eigenvector q. The derivatives up to the order 2m can be
obtained, with decreasing accuracy, from the value of C&z
in 2m + I points —mh, . . . , —h, 0, h, . . . , mh along the
collective coordinate q. As the displacement. h ap-
proaches zero, the a priori error vanishes. On the con-
trary, the round-off error grows with h '. So, in order
to keep both errors small, a suitable compromise value of
h must be chosen.

Only a particular class of coefficients can be computed
with this procedure. Nevertheless, the statistics is not ex-
pected to be bad, as coefficients should depend only weak-
ly on the selected sample. This appears to be the case, as
it is shown in Fig. 2, which illustrates the wave-vector
dependence of the third-order anharmonic coefficient in
a-nitrogen. This figure also shows that the assumptions
underlying Eq. (2.14), namely that the average coupling
coefficients are linear in the energy of the acoustic pho-
nons and weakly dependent on the energy of the optical
phonons, are well satisfied already for n =3.

Using the procedure described above we computed the
C„(q) coefficients in a-nitrogen with the potential of
Murthy by averaging over different values of I',

&, iz, k in
C,z . . . . The coefficients up to vertex order n =7 are
reported in Table I.

B. Many-phonon densities of states

The weighted multiphonon densities 6'+'(co, k) have
been computed using the recursive relation (2.17). The
full Brillouin zone (BZ) of a-nitrogen was sampled with
1331 wave vectors (56 in the reduced BZ). Equation
(2.17) allows one to obtain the density 6+'(co, k) for any
phonon of energy cu and wave vector k. As discussed in
Ref. 20, the expensive part of the algorithm consists in
the restricted summation over the wave vectors imposed
by momentum conservation. This restriction, expressed
by the Dirac's 5 involving the wave vectors in Eq. (2.15),
obliges one to perform two nested loops when using the
recursive relation (2.17): the external index k runs over
the reduced BZ, while the summation index k„covers the
full BZ. In Ref. 20, it was found for the unweighted den-
sities of sum states that the k-unrestricted density
6'"'(co)= ( G'" (co,k) ) becomes practically undistinguish-

able from 6'"'(co, k) at high n Si.nce the weight factors
g+(co& ) in Eq. (2.15) depend explicitly only on the phonon
energy and not on the wave vector, we expected the k-
restricted weighted densities G ~+ '( co, k ) to be similar to
the k-urirestricted weighted densities

6+'(co)—:g 5[co—(co2+ . +co„)]gg+(co, )
2'''0 1=2

TABLE II. k-averaged weighted densities
G'"'(co) —=G'+'(co) —G'"'(co) at T= 36 K and corresponding
standard deviations (in parentheses), in units of cm"+' for the
Raman frequencies (cm ').

co= 38

3 2.28 X 10
(4.80X 10 )

co —47

2.32X 10 9.73 X 10
(7.55 X 10 ) (4.97 X 10 )

co =2329

0.00
(0.00)

4 1.93 X 10-'
(6.51 X 10-')

1.89 X 10 1.06 X 10 2.90X 10
(1 83X10 ) (1 22X10 ) (2 32X10 '

)

5 1.13 X 10 1.14X 10 1.72X 10 1.24X 10
(7.85X10 '

) (2.05X10 ) (3.56X10 '
) (4.77X10 '

)

6 1.65 X 10 1.66X 10 1.37X 10 3. 19X 10
(5.38e X10 '

) (4.66X10 ") (2.72X10 ") (8.24X10 '
)

7 9.94X10 1.01X10 1.23X10 1.87X10
(1.02X10 '

) (2.98X10 '
) (4.68X10 '

) (6.38X10 '
)

In order to verify this we have computed 6'"'(co) by
averaging the densities

6'"'(co,k) =6'+'(co, k) —6'"'(co, k)

over all wave vectors in the reduced BZ at T=36 K, for
several selected frequencies in the region of the lattice
and internal modes (Table II). The standard deviations
ar'e always smaller than the corresponding average densi-
ties and decrease very rapidly with increasing n. Since
the densities 6'"~(co,k) are practically independent of the
wave vector already at n =4, for high orders they may be
safely computed by summing over the frequencies with
no wave-vector restriction, through the recursive rela-
tion
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Such a result might be important for future develop-
ments, since the recursive computation of weighted densi-
ties without wave vector constraints is much less time
consuming and memory demanding. We have not used
this shortcut in this work, which employed the con-
strained sums of Eq. (2.17). The validity of the shortcut
was by no means obvious a priori.

IV. RESULTS

We now discuss the temperature dependence of the
linewidths due to the double-vertex diagrams up to the
order n =7 (A, ' ) obtained for the Raman modes in a-
nitrogen and compare the results to the experimental
data. The linewidths have been computed, using Eq.
(2.14), for temperatures in the range 0—36 K, by multi-
plying the density 6'"'(co, O) at the harmonic frequency
co by the average anharmonic coefficients C„(q), q refer-
ring to the Raman-active branches (Table I).

We also computed the unweighted multiphonon densi-
ties of states
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A. Relaxation of the vibron

The linewidths up to the order A,
' for the vibrons

Te(2329 cm ') and A (2328 cm ') are shown in Fig. 4,
together with the experimental data. The tempera-
ture behavior of the Tg mode linewidth [Fig. 4(a)], ob-
tained by summing the double-vertex diagrams, compares
well to the experiments for T ~ 20 K. The discrepancies
at low temperature are probably due to a residual

D'"'(co, k)= $ 5[co—(ez+ . +co„)]
2. . n

X5[k—(k2+ . +k„)],
using, again, the recursive equation (2.17), with g(co) =1.
These densities of states are not required for the compu-
tation of I'"' and have been calculated for the sole pur-
pose of understanding the effects of the phonon disper-
sion. The densities are shown in Figs. 3(a) and 3(b) for
the lattice and internal modes, respectively.

As expected, qualitatively and quantitatively different
results were obtained for the linewidths of the vibron
(Fig. 4) and of the lattice modes (Fig. 5). We shall discuss
them separately.
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temperature-independent inhomogeneous contribution to
the experimental linewidths.

For the 3 vibron, the agreement between data and
calculations is not as good [Fig. 4(b)]. Due to the small
dispersion of the internal modes [about 1 cm ' (Refs. 39
and 40)], the As and Tg vibrons encounter the same reso-
nances; any difference in the linewidths is therefore due
to differences in the coupling coefBcients. As shown in
Table I, the average coupling coefficients involving the
Ag mode are systematically smaller than those for the Tg
mode and, correspondingly, larger linewidths are predict-
ed for the latter. This prediction agrees qualitatively, but
not quantitatively, with experiments: the experimen-
tal linewidths of the A mode are smaller than that of the
Tg mode, but stil 1 larger than their theoretical counter-
parts [Fig. 4(b)].

Analyzing the contributions I '"' to the width of the
vibrons T and A, we find that in both cases the dom-
inant contribution is given by the diagram of vertex order
n =4(A, ), the n =3,5, 6, 7 terms being much smaller (Fig.
4). Due to the absence of three-phonon resonances
around 2328 —2329 cm ' [Fig. 3(b)], I ' ' is practically
zero at any temperature. It should be noticed that the
multiphonon densities [Fig. 3(b)] involving n —1 phonons
with n odd have a deep minimum at the energy of the
vibrons. Accordingly, the damping terms with odd ver-
tex order are expected to be small.

The agreement between calculations and experiments
leads us to believe that in general the line broadening of
isolated vibrons is due to double-vertex diagrams with
even vertex order. We attribute this phenomenon to the
behavior of the multiphonon density of states at the ener-

gy of the decaying vibron, which severely restricts the
number of effective diagrams. At the A, level, for exam-
ple, all diagrams describing decay processes, "' ' except
the double-vertex diagram with n =4, have at least one
third-order external vertex (involving a two-phonon den-
sity of states) and therefore do not contribute to the vib-
ron linewidth.

B. Relaxation of the Raman lattice modes
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are available up to the transition temperature, ' may be
found in the behavior of the multiphonon density of
states. In the region of the lattice modes [see Fig. 3(a)],
the density around 38 cm ' shows a behavior similar to
that observed at the energy of the vibron, with alternat-
ing nunima (for n-phonon densities with even n) and
maxima (odd n). Thus, we might infer that, similarly to
the case of the vibron just discussed, more complex dia-
grams containing an odd external vertex give negligible

The various contributions to the damping for the three
Raman-active lattice modes as a function of temperature
are shown in Figs. 5(a)—5(c). The good agreement be-
tween experimental and computed linewidths for the lat-
tice modes was a surprise. In the case of lattice phonons,
where three-phonon processes are allowed, it is generally
believed"' that the main contribution to the linewidth
beyond A, order is given by diagrams involving cubic ver-
tices, which were not included in the present treatment.
Therefore, we were expecting a substantial discrepancy
between computed and experimental linewidths for all
the lattice phonons.

Obviously, the observed agreement may be due to can-
cellation of errors, e.g., an excess of anharmonicity in the
C„(q) coefficients may compensate the missing contribu-
tion arising from the diagrams not included in the present
calculation. On the other hand, a possible explanation of
the good agreement in the case of the Eg mode at 38
cm ' (computed frequency), for which experimental data
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FIG. 5. Linewidth vs temperature for the Raman modes of
a-nitrogen in the lattice region. Experimental: (Ref. 23)
(crosses); (Refs. 26 and 27) (diamonds). Calculated: contribu-
tions due to single diagrams (broken lines); total linewidth (solid
lines).
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contribution, and the relaxation is mostly due to the
double-vertex diagram of order n =4.

Also in the case of the T phonon at 47 cm ', the ma-
jor contribution to the linewidths is given by the n =4
term [Fig. 5(b)]; again, the phonon energy occurs approx-
imately in correspondence of minima or maxima of the
multiphonon densities of the states. Unfortunately, the
experimental linewidths are available only up to 17 K,
so the comparison with the computation is problematic.

For the T+ mode at 70 cm ', the predicted linewidth
at low temperature agrees well with experiment [Fig.
5(c)]. The contributions of order higher than A, are in
this case quite large. The residual linewidth at 0 K is en-
tirely due to two-phonon decay processes (n =3); such
processes are very likely to occur, as it can be seen from
the sizeable two-phonon density [Fig. 3(a)] around 70
cm '. As for the T phonon, also in the case of the T+
mode, the temperature range of the experimental data
(0—20 K) is too narrow to allow definitive conclusions
about the relaxation processes involved to be drawn.

tained using Murthy s potential to be partially fortui-
tous. Nevertheless, we think that the overall behavior of
the linewidths is independent on the details of the poten-
tial model and that some observations of general validity
may be drawn.

(1) The damping term of order n tends to zero with in-
creasing n. However, the convergence of the series is not
necessarily fast. For nitrogen the adimensional conver-
gence ratios A, =C„+,(q)/coC„(q) between consecutive
average coefficients are in the range 0.03—0.3, cu being the
energy of a typical lattice mode, say co=50 cm '. Thus
the convergence of the double-vertex series is generally
rather slow, especially at high temperature (kT ~ co).

(2) The convergence of the double-vertex series is
reached much faster, generally at the A, level, for "isolat-
ed" phonons. These phonons are isolated in the sense
that they escape decay processes involving vertices of odd
order, due to the shape of the n-phonon densities of
states. This is often the case for vibrons.

V. CONCLUSIONS

The main result of this work is the theoretical and
practical demonstration of the fact that very high-order
corrections to the phonon self-energy may be efficiently
computed even for a system as complex as a molecular
crystal. Due to the presence of nested sums on inter-
mediate states, the computation of corrections of order
A,

" with traditional algorithms requires a time which
grows exponentially with n. We have found that this
nested-sum difficulty may be overcome for the special
case of the double-vertex diagrams. In this case a recur-
sive algorithm may be used, which allows the linewidths
up to order A,

" to be computed in time linear, rather than
exponential, in n.

We have computed the linewidths up to the order A,
'

due to the double-vertex diagrams for e-nitrogen. The
computed linewidths and their temperature dependence
are in good agreement with the experiment. We have
used a potential model adjusted to the structure and
harmonic frequencies of a-N2. No adjustable parameter
is involved in our calculations, which may therefore be
regarded as an a priori determination of the linewidths.
Previous calculations for nitrogen showed that different
potential models with comparable harmonic frequencies
may give significantly different linewidths at the k lev-
el. ' ' Consequently, we believe the very good results ob-

I
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APPENDIX: DOUBLE-VERTEX SELF-ENERGY

Frequent references in the form (I. . . ) to equations in
the previous paper ' (Ref. I) will occur in this appendix.
The basic equation of this work [Eq. (2.4)] will be ob-
tained by replacing twice Eq. (I4.8) into Eq. (I4.6), dis-
carding all terms which do not represent double-vertex
diagrams and rearranging the result. Thus, we start from
the equation of motion [Eq. (I4.6)] for the one-phonon
Green's function G (q) = G (bq, b q,'co):

(~—~q)G(q)=1+ g n g V qp3. . . „G(23. n) .
n~3 23 n

(Al)

Then, using Eq. (I4.8) to climb one step in the hierarchy
of coupled equations, we keep only those terms which
may give rise to double-vertex diagrams when replaced in
Eq. (Al):

G(23 n)= n g [o2V 22 . . . „G( ' n'3 n)
1

CO C02+CO»+ ' ' ' +CO„

+cr&V 3z, „.G(22' . n'45. . . n)+ . (A2)

For each one of the n —1 Green's functions on the right-hand side of Eq. (A2), we climb another step [Eq. (I4.8)] and
discard all terms that give rise to diagrams with three or more vertices. For example, for the Green s function
G(22' n'45 n) one obtains

G(22' . n'45 . n)= ([b2bz. b„b4b» b„,b q]) .1

CO CO2+CO~ + ' ' ' +CO„+CO4+CO»+ ' ' ' +CO„
(A3)

In the limit of a large sample, Wick's theorem holds. ' Then the only averages which are not negligible, and, which
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give rise to double-vertex diagrams when replaced in Eqs. (Al) and (A2), are those where one of the n —1 summation
indices 2'. n' is conjugate to —q, while the other indices are conjugate to 245. . . n [again for G(22' . n'45 . n)].
Overall these conjugate pairings may take place in (n —1)!different ways. In Eq. (A3) all the conjugate frequency pairs
co. +m vanish from the frequency factor, which becomes '

co —(co~+ co~ +co z+ co &+ . . + co „+co4+ +co„)
1

=Go(q), (A4)

where we have recognized 1/(co —
co~ ) as the "bare" Careen's function G&&(q). As discussed in Ref. 21, the decoupling

procedure for the hierarchy of coupled equations for the Green s functions involves the replacement of Go(q) with the
"dressed" function G(q). After this replacements, repeating the above procedure for all terms in Eq. (A2), exploiting
the symmetry of V,z. . . „with respect to exchanges of indices, and taking into account the multiplicity factor (n —1).,
we obtain the equation for G(q):

1
(co co )G(q)=1+ g n (n 1). g V ques. . . Vq —z —s ~ ~ ~

n~3
"

co —coz+cos+ . +co„

X Io~([bqb sb 4 b bsb4 b b ])
+os([blab b zb 4b s b „b4b5 b„,b ])+ . ]G(q) . (A5)

By comparing Eq. (A5) with the expected Dyson's equation (co —co )G(q) =1+X(q)G(q), we identify the coefftcient of
G(q) as the self-energy due to the double-vertex diagrams X(q).

The averages in Eq. (A5) may be simplified using Wick s theorem, which allows us to commute inside the thermal
averages all pairs of b& operators, except those with conjugate summation indices. For conjugate indices, according to
Eq. (12.8), [bt, b t ] =tT t. Furthermore cr = 1, as q )0. Thus the expression in braces in Eq. (A5) becomes

j =tr~(b 3b 4 b „bsb~ . b~ )+cr3(blab zb ~ b „b~ „)
Equation (A6) may be transformed in a more compact form by noticing that, thanks to Eq. (IA1),

[b~bs . . b„,b ~b s
. b „]= [b~, b ~b s b „]bs . b„ bz[bs, b zb s

. b „]b4 . b„

(A6)

(A7)

It is easy to see, using again Eq. (12.8) and Wick s theorem, that the average of the summation on right-hand side of
Eq. (A7) is equal to I

.
I [Eq. (A6)]. Thus we may rewrite the self-energy X(q) as

1X(q)= g n (n —1)! g V qp3. . . g Vq —z 3. . . „([b~bs b„,b ~b 3 b —„]) . (AS)
n~3 23 '' n co coz+cos+ ' +co„

Our main equation for the nth-order damping term I ~"' [Eq. (2.4)] is obtained directly as the imaginary part of the nth
term of the series for X(q) [Eq. (A8)].
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