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Abstract: We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN
suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple
time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations.
The present release has been supplemented with the most advanced techniques for enhanced sampling in atomistic
systems including replica exchange with solute tempering, metadynamics and steered molecular dynamics. All these
computational technologies have been implemented for parallel architectures using the standard MPI communication
protocol. ORAC is an open-source program distributed free of charge under the GNU general public license (GPL) at
http://www.chim.unifi.it/orac.
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Introduction

Molecular dynamics simulation is a well established and straightfor-
ward technique1, 2 to study the microscopic behavior of simple liquid
systems, essentially based on the assumption of an interparticle
potential and on a stepwise numerical integration of the Newto-
nian equations of motion. Dealing with complex heterogeneous
systems, such as biological molecules in solution, requires however
complex technical solutions. The program ORAC3–5 was originally
conceived and written to efficiently cope with the problems and
intricacies that arise in the simulations of proteins. In particular
the numerical integration of the equations of motion was efficiently
carried on with multiple time step schemes by taking advantage of
the disparate time scale dynamics of complex molecular systems.6

Versions of these effective integrators were devised4 for simulating
the system via the extended Lagrangian method1 under a variety of

thermodynamic conditions. Electrostatic interactions, notoriously
a major stumbling computational block in the simulation of polar
systems in periodic boundary conditions, were treated using the
smooth particle mesh Ewald technique,7–9 an algorithm deliver-
ing astonishing performances3 both in accuracy and efficiency. All
these advanced computational techniques allow to simulate very
efficiently a biomolecular system. Unfortunately, biological systems
are characterized by rugged free energy surfaces with multiple min-
ima (conformers) separated by large barriers, and swaps between
these conformers can take, in (time) average, as long as a few
microseconds.10 Thus, even resorting to advanced techniques and/or
to massive parallelism, the system may remain typically trapped dur-
ing the whole computationally accessible simulation time in a local
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minimum, and the rare event of escaping the trap, surmounting a
free energy barrier, never happens.

To overcome such severe sampling problem, many molecular
dynamics techniques have been devised. The Replica Exchange
Method (REM)11–14 provides an elegant and simple solution to
quasiergodic sampling. In REM, several independent trajectories,
called replicas, are simultaneously generated in different thermody-
namic conditions. The production of these simultaneous trajectories
usually occurs on an array of parallel processors. The thermo-
dynamical conditions of these replicas are chosen so as to span
homogeneously the thermodynamic space from the ensemble of
interest to a different ensemble with enhanced transition rates, where
the sampling is ergodic. During the simulation, neighbouring repli-
cas are allowed to exchange their configurations, subject to specific
acceptance criteria. In this fashion, a trajectory is no longer bound
to an unique given equilibrium ensemble but can randomly walk in
a thermodynamic space of different equilibrium conditions, visiting
ensembles where an ergodic sampling is possible, and then going
back to the quasiergodic ensemble of interest. The gain in sampling
efficiency with respect to a series of uncoupled parallel trajectories
comes from the exchange of information between trajectories, and
the replica exchange process is the tool by which “information”
(e.g., a particular configuration) is carried, for example, from a high
to a low temperature. The REM algorithm can be used in principle
without prior knowledge of the “important” reaction coordinates of
the system, i.e., in the case of biological systems, those that define
the accessible conformational space in the target thermodynamical
conditions. The a priori identification of these unknown coordi-
nates, along with their underlying free energy surface, are actually
one of the outputs of the method. The REM algorithm and its imple-
mentation in ORAC are discussed in “Replica Exchange Method”
section.

If these important coordinates are known or can be guessed, one
can use less expensive techniques to study the associated essential
free energy surface. Canonical reweighting or Umbrella Sampling
methods,15 for example, modify (bias) the interaction Hamiltonian
of the system in such a way to facilitate barrier crossing between
conformational basins. The canonical averages of the unperturbed
system are then reconstructed by appropriately reweighting the
biased averages.

Quasi-equilibrium techniques16–19 build such biasing potential
by periodically adding a small perturbation to the system Hamil-
tonian so as to progressively flatten the free energy surface along
selected reaction coordinates. For example, in the so-called “meta-
dynamics” simulation method,16 a history-dependent potential,
made of Gaussian functions deposed continuously at the instanta-
neous values of the given reaction coordinates, is imposed to the sys-
tem. The history-dependent potential disfavours configurations in
the space of the reaction coordinates that have already been visited,
and it has been shown, by appropriately adjusting system depen-
dent parameters, to numerically converge to the free energy surface
inverted in sign.20 In the present version of ORAC the metadynam-
ics technique has been implemented in the parallel version whereby
multiple metadynamics simulations (walkers) are run in parallel
cooperatively building a common history dependent potential which
is shared among all processes. The history dependent potential is
generally defined over a multidimensional domain involving several
reaction coordinates. Metadynamics can be used, e.g., to identify the

minimum free energy path between two metastable protein states
defining the reactants and the products of an elementary chemi-
cal reaction. The metadynamics algorithm is described in detail
in “Metadynamics Simulation: History-Dependent Algorithms in
Non-Boltzmann Sampling” section.

Nonequilibrium techniques21–24 use an additional driving poten-
tial acting on an appropriate reaction coordinate to steer the system
from a given equilibrium initial state to a given final state, and
viceversa, producing a series of forward and reverse nonequilibrium
trajectories. The driven coordinate can be defined as a trajectory in
a multidimensional reaction coordinate space. The free energy dif-
ferences between the initial and final states (the reactants and the
products) is connected, through the Crooks fluctuation theorem,22 to
the histograms of the work spent in these trajectories. Reconstruction
of the potential of mean force25 along one arbitrary reaction coordi-
nate using nonequilibrium steered molecular dynamics is described
in “Steered Molecular Dynamics” Section. In the last Section we
provide some information regarding the distribution of the code.

Replica Exchange Method

REM11–14 consists in performing a series of independent simulations
of the same system, each in a different equilibrium condition. In
its most common implementation, each replica of the system has
a different temperature, going gradually from the temperature of
interest T0 to a higher temperature TM, high enough to enhance
barrier-crossing efficiency and sampling of metastable conformers.
The different simulations are statistically coupled by allowing them
to periodically exchange their temperatures. Let Xr and Tr denote
respectively the configuration and the temperature of the rth replica,
where r is an index that marks the different simulations. Replica
exchanges, in which a pair of replicas exchange their temperature,
are attempted at regular intervals during the simulation, and accepted
so as to preserve the overall equilibrium distribution

P(X1, T1, .., XN , TN ) =
N∏
r

P(Xr , Tr), (1)

where P(Xr , Tr) is the canonical distribution at the temperature Tr

P(Xr , Tr) = e−βr V(Xr )

Zr
, (2)

β−1
r = kBTr , V(Xr) is the potential of the system, and Zr =∫
e−βr V(Xr )dXr is the configurational partition function at the tem-

perature of the rth replica. Let us suppose that two replicas have
been selected for an exchange and that they have configurations X
and X ′ and temperatures T and T ′. Since replicas are independent,
we can neglect the other replicas; the transition probability that the
replicas exchange their temperatures (or, equivalently, their configu-
rations) is written as W(X, T ; X ′, T ′), while W(X, T ′; X ′, T) denotes
the transition probability for the inverse exchange. For the extended
system of N replicas to reach the equilibrium distribution of Eq. (1),
the detailed balance condition should hold

P(X, T , X ′, T ′)W(X, T ; X ′, T ′)

= P(X, T ′, X ′, T)W(X, T ′; X ′, T) (3)
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Figure 1. Energy histograms PT (V) at different temperatures resulting
from a REM simulation. In the inset two distributions are shown, PT ′ (V ′)
and PT (V), such that T ′ > T . The dark area in the inset corresponds to
the probability P(�V < 0) that V ′ − V < 0. The probability P(acc) of
accepting an exchange of temperatures is P(acc) = 2P(�V).

that is satisfied by accepting an exchange corresponding to an energy
difference �V = V(X ′) − V(X) with the Metropolis acceptance
criteria

P�V (acc) = min{1, e�β�V }, (4)

where �β = β ′ − β.
In principle, eq. (4) refers to the probability of an exchange

between any two temperatures. In practice, however, exchanges are
attempted between replicas with adjacent temperatures. Let us sup-
pose that T ′ > T . The probability of accepting an exchange can be
written as the sum

P(acc) = P(acc, �V > 0) + P(acc, �V < 0), (5)

where P(acc, �V > 0) is the joint probability to observe a positive
energy difference between the replicas and to accept the exchange.
As a consequence of the detailed balance condition, among all
accepted exchanges at equilibrium, exchanges with a positive energy
difference have the same probability of exchanges with a negative
energy difference, Pacc(�V > 0) = Pacc(�V < 0), and therefore
P(acc, �V > 0) = P(acc, �V < 0). Using this identity, and the
fact that the probability of accepting an exchange with �V < 0 is
unitary [eq. (4)], since �β < 0, one finds that the probability of
accepting an exchange is two times the probability that the replica
at the higher temperature has a lower energy than the replica at the
lower temperature:

P(acc) = 2P(acc, �V < 0) = 2P(�V < 0). (6)

Equation (6) is illustrated in Figure 1, where P(acc) is shown as
a shaded area, together with the energy distributions at the two
temperatures, PT (V) and PT ′(V). The overlap between the two

distributions is a lower bound for the acceptance probability. In
particular, assuming Gaussian distributions, P(acc) is given by

P(acc) = erfc

( 〈V〉T ′ − V∗
√

2σT ′

)
, (7)

where 〈V〉T ′ is the mean energy at the higher temperature T ′
and V∗ is the energy value such that PT (V∗) = PT ′(V∗) (see
Fig. 1). Clearly, increasing the temperature difference between the
replicas will degrade the acceptance ratio. Based on the aforemen-
tioned description, the most natural exchange protocol periodically
attempts simultaneous replica exchanges between pairs of neigh-
bouring temperatures, alternating between exchanges involving the
ith and the (i + 1)th temperature with odd and even i.

Given the aforementioned scheme, what is the optimal spacing in
temperatures for an enhanced sampling of the configurational space
at the target temperature? First, the highest temperature TM , defining
the full temperature range �T = TM − T0, must be selected such
that kBTM is of the order of the relevant energy barriers. Second,
the acceptance probability for an exchange is larger, the larger is the
overlap of the energy distributions referring to two neighbouring
replicas, i.e., the closer are the temperatures T ′ and T . However, the
closer are the temperatures and the larger is the number of replicas
to be simulated, i.e., the heavier is the CPU cost of the simulation.
For an optimal choice, we thus set

〈V〉T ′ − 〈V〉T = σT ′ + σT , (8)

where σT is the energy fluctuation at temperature T . Assuming that
the system can be described by an ensemble of n harmonic oscilla-
tors, we have that 〈V〉T = n/2 kBT and σT = (n/2)1/2 kBT . Sub-
stituting these values in eq. (8), we obtain the optimal temperature
spacing for neighboring temperatures26:

T ′ − T = 2

(n/2)1/2 − 1
T . (9)

In Figure 2, we show a typical parallel REM simulation for a general
system with 16 replicas. The temperature of each replica is shown
as a function of the simulation time. Two important properties of
the optimal temperature spacing arise from eq. (9): (i) the optimal
temperature spacing is not uniform but grows with the replica tem-
perature and (ii) it must be decreased with increasing number of
degrees of freedom. The latter is indeed a severe limitation of the
REM algorithm, since, as the size of the system grows, a larger
number of replicas must be employed for preserving a significant
exchange acceptance ratio. This is due to the inescapable fact that
the energy fluctuations grow with n1/2 while the energy grows with
n. Moreover, in many important cases, one has to effectively sample
reaction coordinates that are rather localized in the system, like e.g.
in the case of protein-drug interactions. In the temperature REM,
the extra heat in the hot replicas is clearly distributed among all
the degrees of freedom of the system and therefore most of this
heat is used for sampling uninteresting configurations (e.g., solvent
configurations).

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 2. Schematic representation of replica exchanges for a REM
simulation with 16 replicas. The bold line represents the time evolution
of the temperature of a replica through a series of exchanges.

Hamiltonian REM

In this program, we adopt a far more flexible variant of REM, Hamil-
tonian REM.26 In Hamiltonian REM, each replica is characterized
by different interactions rather than by a different temperature. In
its simplest implementation, the potential energies of the replicas
differ by a scaling factor cr , such that

Vr(X) = crV(X), (10)

where Vr(X) denotes the potential energy of the rth replica and
V(X) the original potential perceived by the system. Given a scal-
ing factor c, the probability of a configuration X is given by
P(X) ∝ exp(−βcV(X)). As thermodynamics is concerned, scaling
the potential energy of a canonical system is equivalent to an inverse
temperature scaling, since exp(−βcV(X)) = exp(−β ′V(X)),
where T ′ = T/c. From the point of view of a molecular dynamics
simulation, the advantage of using the Hamiltonian REM approach
is two-fold: (i) as all the replica have the same operating tempera-
ture, one does not have, like in temperature REM, to reinitialize the
velocities after one successful configuration exchange and (ii) since
the mean atomic velocities are the same throughout the extended sys-
tem, one does not have to adapt the time step size for preserving the
quality of r-RESPA integrator,6 as it should be done in temperature
REM. Moreover, Hamiltonian REM can also be applied to a spe-
cific part of the potential, weakening only the interactions that slow
down the sampling along an interesting reaction coordinate. Given
a potential energy made up of a sum of various contributions (e.g.,
stretching, bending, torsional, solute–solvent solute–solute solvent–
solvent non bonded etc.), V(X) = ∑k

i=1 vi(X), the potential of the
rth replica is given by

Vr(X) =
k∑

i=1

crivi(X) = cr · v(X), (11)

where cri is the scaling factor for vi(X), the ith potential term.
Therefore, each replica is characterized by a different k-dimensional

scaling vector cr = (cr1, .., cri, .., crk), where in standard REM algo-
rithm each replica has a different temperature. Such a vector defines
a particular transformation of the original potential corresponding
to different “interactions” between the different components of the
system. The original potential of the system corresponds to the
vector (1, 1, 1, 1, . . .). In the canonical ensemble, when a replica
is associated to vector cr , it samples configurations according to

Pr(X) = e−βcr ·v(X)

Zr
, (12)

with Zr = ∫
e−βcr ·v(X)dX. Rather than exchanging temperatures,

in Hamiltonian REM replicas exchange their scaling vectors: the
detailed balance condition for the exchange of “interactions” c and
c′ between two replicas with configurations X and X ′ is satisfied by
using the acceptance probability:

P�v(acc) = min{1, eβ�c·�v}, (13)

where �c = c′ − c and �v = v(X ′) − v(X).
There is considerable freedom in splitting the potential as in

eq. (11). In order to translate them to a temperature variation, the
scaling factors should always be positive and either smaller or
greater than one, implying a heating and a cooling, respectively,
of the involved degrees of freedom.

Implementation in ORAC

In the ORAC implementation of the Hamiltonian REM algorithm,
in order to keep the communication overhead at the lowest pos-
sible level, the interaction vectors c instead of the configurations
are actually exchanged. Therefore, a generic process of a parallel
REM simulation, corresponding to the rth replica, will cross dif-
ferent scaling of the original potential during the simulation. When
the rth process periodically writes out the coordinates of its con-
figuration (typically in pdb or xyz format), one must also keep
track of the current potential defined by a vector of scaling factors
(the program does this automatically) in order be able to reweight
a posteriori configurations sampled at thermodynamical conditions
different from the target one. In the following, we will discuss the
different possible choices for scaling the system interactions.

The potential of the rth replica can be splitted according to the
following physically justified subdivision:

Vr(X) = cr · v(X) = cr1(Vstretch + Vbend + Vi−tors + Vh
p−tors)

+ cr2(Vp−tors + V14) + cr3(Vvdw + Vqr + Vqd). (14)

The first potential term of the sum collects all the potential terms
generating “fast” motions: stretching (Vstretch), bending (Vbend) and
improper torsional interactions (Vi−tors). This term encompasses
also proper torsions involving hydrogen atoms. The second term
collects all the other proper torsional interactions (Vp−tors) and the
so-called 1–4 interactions (V14). Finally, the third term collects all
the nonbonded interactions: the Lennard-Jones potential (Vvdw) and
the direct (Vqd) and reciprocal (Vqr) lattice electrostatic. We refer

Journal of Computational Chemistry DOI 10.1002/jcc
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to ref. 3 eqs. (4–13) for a complete discussion of the interaction
potential in proteins and biomolecular systems and of the mean-
ing of the symbols in eq. (14). Given this subdivision, there is
complete freedom in changing the original potential of a biomolec-
ular system, for example by weakening the second potential term
only that acts directly on the torsional degrees of freedom. A typ-
ical choice is to set cr1 = 1 for all replicas, as there is little
advantage for conformational sampling in exchanging configura-
tions involving stiff degrees of freedom such as bendings, stretchings
and improper torsions. With this choice, the latter interactions do
not enter in the acceptance probability of eq. (13). On the other
hand, conformational transitions in proteins are mainly driven by
torsional and solute-solute and solute-solvent non bonded interac-
tions. It is thus convenient to “heat up” these degrees of freedom
by scaling the corresponding potential functions with cr2 < 1
and cr3 < 1.

Hamiltonian REM in ORAC can work also by tempering only a
user defined “solute”. Unlike standard implementation of the solute
tempering techniques,27 the “solute” can be any portion of the sys-
tem. The solute can be freely defined as the portion of the system
that is strongly coupled to the relevant coordinates for the process
under study, minimizing the number of degrees of freedom involved
in the replica exchanges. We illustrate this approach with a work-
ing general example. Suppose to choose a subset of atoms in the
system that define the solute. This subset can be chosen arbitrar-
ily and may include disconnected portions of the protein, as well
as selected solvent molecules. The remaining atoms of the system
define the “solvent” around the solute. According to this subdivision,
the global potential of the system can be written as

V(X) = Vslt(X) + Vslt−slv(X) + Vslv(X), (15)

where Vslt includes all the the solute–solute interactions, while the
Vslt−slv term includes the interactions between the solute and the
solvent and Vslv all the solute–solute interactions.

At variance with the standard “global” scaling, in this temper-
ing approach the potential of the various replicas is “locally” scaled
for those interactions involving the solute. Using the vectorial nota-
tion introduced in eq. (11), the potential of the rth replica can be
written as

Vr(X) = cr · (vslt + vslt−slv) + Vslv(X). (16)

The solvent potential term does not change during an exchange and
therefore it does not affect the acceptance probability of eq. (13).
Clearly, the solute-solute and the solute-solvent interactions can also
be modified separately

Vr(X) = cr · vslt(X) + Vslt−slv(X) + Vslv(X)

Vr(X) = Vslt(X) + cr · vslt−slv(X) + Vslv(X), (17)

enabling, for example, the user to change (strengthening or weak-
ening) the solute-solvent interactions with the replica number.

In the current implementation, the fast bonded potential (stretch-
ing, bending and improper torsion terms) and the reciprocal lattice

contribution Vqr, i.e., the long range electrostatic, are actually not
affected by the scaling factors c, thus being virtually assimilated to
solvent–solvent contributions. Vqr is not split in the solute–solute,
solute–solvent and solvent-solvent components both for a physical
and a practical reason. First, the long-range potential is expected
to be generally rather insensitive, with respect to the short range
electrostatic component, to variations in the structure of a solvated
biomolecular system. Second, in the Particle Mesh Ewald approach
the solute–solute, solvent–solute and solvent-solvent contribution
to Vqr cannot be separated, and this term must be thus arbitrarily
assigned to one of the three components.

The Hamiltonian REM algorithm as implemented in ORAC
works also for constant pressure simulations. Just like the work-
ing temperature of the thermostat, the external pressure is the same
for all the replicas. From the point of view of configurational sam-
pling, in the NVT case, a simulation at temperature T with a scaled
potential V ′(X) = cV(X) is equivalent to a simulation with the
original potential but conducted at a different temperature T ′. In the
NPT case, during a simulation with the scaled potential V ′ configu-
rations are sampled as we were using the original potential, but with
a scaled temperature T ′ = T/c and a scaled pressure P′ = P/c.

Metadynamics Simulation: History-Dependent
Algorithms in Non-Boltzmann Sampling

Given a rough (because of some free energy barrier) estimate F̃(z)
of a free energy profile F(z) from an old simulation, the simplest
way to know how good this estimate is consists in performing a new
simulation using this estimate, inverted in sign, as a bias potential
V(z) = −F̃(z). The new simulation will result in an estimate F̃ ′(z)
for the free energy F ′(z) of the biased system. If F̃ ′(z) turns out
to be flat, then F(z) ∼ −V(z) is the free energy of the original
system inverted in sign. Otherwise, from this simulation we can
compute an improved estimate for F(z) through the equation F̃(z) ∼
F̃ ′(z) − V(z) and repeat the whole procedure. The effectiveness
of this tedious approach is due to the fact that each correction to
the biasing potential makes the system more ergodic, and therefore
each successive simulation is statistically more accurate than the
former.

This iterative approach to the problem28, 29 led to the devel-
opment of adaptive biasing potential methods that improve the
potential “on the fly”,16, 17, 19, 30 i.e., while the simulation is per-
formed. All these methods share the common basic idea, namely, “to
introduce the concept of memory”30 during a simulation by chang-
ing the potential of mean force perceived by the system, in order
to penalize conformations that have been already sampled before.
The potential becomes history-dependent since it is now a func-
tional of the past trajectory along the reaction coordinate. Among
these algorithms, the Wang-Landau17 and the metadynamics16 algo-
rithms have received most attention in the fields of the Monte Carlo
and molecular dynamics simulations, respectively. This success is
mainly due to the clearness and the ease of implementation of the
algorithm, that is basically the same for the two methods. The Wang-
Landau algorithm was initially proposed as a method to compute
the density of states g(E), and therefore the entropy S(E) = ln g(E),
of a simulated discrete system. During a Wang-Landau MC simu-
lation, S(E) is estimated as a histogram, incrementing by a fixed
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quantity the frequency of the visited energy levels, while moves
are generated randomly and accepted with a Metropolis probability
acc(E → E′) = min{1, exp(−�S)}, where �S = S(E′) − (E) is
the current estimate of the entropy change after the move. Although
for a random walk in energy the system would have been trapped in
entropy maxima, the algorithm helps the system in escaping from
these maxima and reconstructs the entropy S(E). Metadynamics
extends this approach to off-lattice systems and to the computation
of any entropy-related thermodynamic potential along a given set of
reaction coordinates. Metadynamics has been successfully applied
in the computation of free energy profiles in disparate fields, ranging
from chemical physics to biophysics and material sciences. For a
system in the canonical ensemble, metadynamics reconstructs the
free energy along some reaction coordinate z as a sum of Gaus-
sian functions deposed along the trajectory of the system. This sum
inverted in sign is used during the simulation as a biasing potential
V(z, t) that depends explicitly on time:

V(z, t) =
∑

t′=τ ,2τ ,...t

G(z; zt′ , h, σ), (18)

where G(z; zt , h, σ) = h exp(−(z − zt)
2/2σ 2) is a Gaussian func-

tion centered in zt . During a metadynamics simulation, the potential
V(z, t) will grow faster for states with an higher probability, push-
ing out the system from minima in the free energy landscape. If
the rate of deposition, ω = h/τ , is sufficiently slow, the sys-
tem can be considered in equilibrium with the biased Hamiltonian
H ′(x, t) = H(x) + V(z, t), and therefore the probability of visiting
state z at time t is the equilibrium canonical distribution p(z, t) ∝
exp[−β(F(z)+V(z, t)]. Once all the free energy minima have been
“filled” by the biasing potential, and therefore V(z, t) = −F(z),
such a probability is uniform along z and the potential will grow
uniformly.

The thermodynamic work spent in changing the potential from
the original Hamiltonian H(x) to H ′(x, t) can be computed through
the relation W = ∫ t

0 dτ( ∂H ′
∂t )τ . In the limit of an adiabatic transfor-

mation, this quantity is equal to the free energy difference �F =
F ′ − F0 between two systems with energy functions H ′(x, t) and
H(x), where F ′ = ∫

dx exp(−βH ′) and F0 = ∫
dx exp(−βH).31

However, if the process is too fast with respect to the ergodic time
scale, a part of the work spent during the switching will be dis-
sipated in the system, resulting in a nonequilibrium, noncanonical
distribution, and in a systematic error in the free energy estimate. In
particular, it is assumed that during a metadynamics simulation all
the microscopic variables different from the macroscopic reaction
coordinate z are always in the equilibrium state corresponding to the
value of z. This property is known with the name of Markov prop-
erty,32 and it summarizes the main assumption of the algorithm: all
the slow modes of the system coupled to the reaction under study
have to be known a priori and they have to be included in the num-
ber of the reaction coordinates. Therefore, metadynamics should
be considered a quasi-equilibrium method, in which the knowl-
edge about the variables that capture the mechanism of a reaction is
exploited to gain insight on the transition states and more generally
to compute the free energy landscape along the relevant reaction
coordinates.

Implementation in ORAC

From the practical point of view, a metadynamics simulation con-
sists in two steps. In the first one, a set of reaction coordinates is
chosen whose dynamics describes the process under study. As we
said, such a procedure requires a high degree of chemical and phys-
ical intuition for its application to a complex molecular system,
since these variables are not obviously determined from a molecu-
lar structure. In the present release, the reaction coordinates can be
user-definable stretching, bending and torsional degrees of freedom.

The second step is the metadynamics simulation itself, during
which a history-dependent potential is constructed by summing, at
regular time intervals, repulsive potential terms centered in the cur-
rent position of the system in the space of the reaction coordinates.
In its standard implementation, the history-dependent potential is
given by a sum of small repulsive Gaussian functions [eq. (18)].
Some variants have been introduced, with the intent of improving
the accuracy or the efficiency of the method.33, 34 In ORAC we have
used Lucy’s functions35 as a very efficient alternative to the use of
Gaussians. A Lucy’s function is defined as∗

L(z; z0, h, w) = h

(
1+2

|z − z0|
w

)(
1− |z − z0|

w

)2

; if |z − z0| ≤ w

L(z; z0, h, w) = 0; if |z − z0| > w
(19)

with the origin at z0. The symbols h and w denote the height and
the width. Such a function is normalizable,

∫ ∞
−∞ dz L(z; z0, h, w) =

hw, has a finite range w, has a maximum at the origin and it is
differentiable everywhere. A Lucy’s function can be compared with
a Gaussian function with the same value at the origin and at z =
z0 + w/2, such that

2σ = w/(2 ln 2)1/2. (20)

A Lucy’s function can be regarded as a Gaussian function with σ

in eq. (20), but without the long tails of the Gaussian, as can be
seen in Figure 3. The parameters h, w and τ affect the accuracy of
the free energy reconstruction in a similar manner to the height and
the width of Gaussian functions and a comprehensive review on the
analysis of the error during a metadynamics run can be found in
ref. 20.

The history dependent potential used during an ORAC simula-
tion can therefore be written as

V(z, t) =
∑

t′=τ ,2τ ,...

L(z; zt′ , h, w). (21)

During a simulation, forces from this biasing potential are computed
as a sum of derivatives of L functions. These derivatives are compu-
tationally attractive, since they do not require the evaluation of an
exponential function as in the case of the derivative of a Gaussian

∗Lucy’s function can be defined for a generic order n such that it has n − 1
continuous derivative everywhere. The original definition35 was given for
n = 3; here it is employed with n = 2.
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Figure 3. Lucy’s function L(z) with h = w = 1, along with a Gaussian
function G(z) with the same height and 2σ = w/(2 ln 2)1/2.

function. Moreover, since L has a finite range by definition, it does
not need to be smoothly truncated,34 as there are no contributions
to the forces from hills farther than w.

In the metadynamics approach, during a simulation the algorithm
keeps on adding terms to the history-dependent potential [the sum
in eq. (21)] with the same constant rate ω = h/τ . However, the
optimal solution would be to use a faster rate at the beginning of the
simulation, so as to produce a rough estimate of the free energy, and
then to reduce ω to refine this estimate.36 This problem corresponds
to finding an optimal protocol for the evolution of the modification
factor in the original Wang-Landau algorithm. Various solutions
have been proposed19, 37–39 in which the energy h in eq. (19) is
time-dependent. We propose instead to add a term to the biasing
potential with a given probability Pt(add), that changes in time.
For example, for Pt(add) ∝ 1/t, the evolution of the rate would
be given by ω(t) = Pt(add) ω0 ∝ ω0/t. This procedure can be
seen on average as an increasing deposition interval τ(t), such that
ω(t) = h/τ(t) decreases in time. In the present implementation
of ORAC , three different choices are available for the probability
P(add). The default one is simply P(add) = 1 and corresponds to
the standard metadynamics algorithm. The second one is given by

Pt(add) = e−Vmax(t)/kBT ′
, (22)

where Vmax(t) is the maximum value of the potential V(z, t) at
time t. During the simulation, the effective rate ω(t) decreases as
Vmax(t) increases. As Vmax � kBT ′, the deposition rate ω(t) is
so slow that the transformation can be considered adiabatic, and
the biasing potential converges to the free energy inverted in sign,
F(z) = −V(z, t). The slowdown of ω can be tuned by selecting the
parameter T ′, such that kBT ′ matches the maximum free energy dif-
ference in the relevant domain of the reaction coordinates. Finally,
following the well-tempered metadynamics approach,39 the third
choice is given by

Pz,t(add) = e−V(z,t)/kBT ′
, (23)

where the probability depends both on time t and on position z of the
system along the reaction coordinate through the biasing potential

V(z, t). In this case, the biasing potential does not converge to the
free energy inverted in sign as in the previous case, since in general
ω turns out to be coordinate-dependent even when the potential has
flatten the free energy profile. However, as shown in,39 the relation

F(z) = −T + T ′

T
V(z, t) (24)

can be used to recover the original free energy from the biasing
potential.

The multiple walkers version of metadynamics algorithm40 was
implemented in the parallel version of the code through the MPI
library. This approach is based on running simultaneously multiple
replicas of the system, contributing equally to the same history-
dependent potential, and therefore to the same free energy surface
reconstruction. For N replicas, V(z, t) can be written as a double
sum

V(z, t) =
∑

t′=τ ,2τ ,...t

∑
i=1,N

L(z; zi,t′ , h, σ), (25)

where zi,t′ is the position at time t′ of the ith replica along z. In
particular, the enhanced efficiency of this algorithm with respect to
uncoupled simulations contributes to make the calculation of free
energy surfaces in high dimensions more accessible.

Steered Molecular Dynamics

Steered molecular dynamics (SMD) simulation is a quite old tech-
nique mimicking the principle of atomic force microscopy. In
practice, one applies a mechanical external potential that forces the
system to perform some prescribed motion in a prescribed simu-
lation time. SMD simulations have been widely used to explore
the mechanical functions of biomolecules such as ligand receptor
binding/unbinding and elasticity of muscle proteins during stretch-
ing at the atomic level.41 They have also been used in the past to
approximately estimate the free energy F(z) along a given reaction
coordinate z. The model upon which this technique relies is based on
the assumption that the driven motion along the reaction coordinate
could be described by an overdamped Langevin equation as

γ ż = −dF(z)

dz
+ f (z, t) + ξ(t), (26)

where γ is the friction coefficient, f (z, t) is the external force due to
the driving potential and ξ(t) is a stochastic force related to the fric-
tion through the second fluctuation-dissipation theorem. The free
energy F(z) can then be determined only if one can compute the
friction coefficient γ , so as to evaluate the frictional force that dis-
counts the irreversible work done in the driven process. The method
also relies on the strong assumption that the friction along z is local
in time, i.e., the underlying equilibrium process is Markovian.

Recent developments in nonequilibrium thermodynamics have
clarified that the free energy along the given reaction coordinate
can actually be reconstructed using an ensemble of SMD simula-
tions without resorting to the knowledge of the frictional behaviour
of the system along the coordinate itself. Such developments date
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back to a paper by Evans, Cohen and Morriss,42 where the first
example of fluctuation theorem was formulated for a system in a
nonequilibrium steady-state. This theorem gives a first quantitative
description of the entropy production in finite systems, relating the
probability of observing a process with a given entropy produc-
tion, and a process where the same amount of entropy is consumed,
rather than produced. Later, Evans and Searles43 extended this anal-
ysis to the entropy production in a nonequilibrium transient state, in
which a system initially at equilibrium is driven out of equilibrium
by switching on an external perturbation, and then relaxes to a new
equilibrium when the external perturbation stops changing.

Here we are interested in simulating a different kind of nonequi-
librium experiment, in which the state of a system, initially in
equilibrium, is changed in a finite time, driving the system out of
equilibrium. This experiment is performed by introducing an exper-
imental device (such as an optical trap), through which external
forces can be applied to the system. The potential energy V(x, λ)

of the system depends on the actual configuration x of the system
itself, but also on the position λ of the device, that acts as a control
parameter. Initially, the external device is held fixed in λ = λA, and
the system relaxes to the corresponding equilibrium distribution

pA(x) = eβ(FA−H(x,λA)), (27)

where H(x, λA) = H(x)+V(x, λA) include the interaction energy of
the system and the device and FA = −β−1 ln

∫
dx exp(−H(x, λA))

is the free energy of state A. The device is then moved in a time t
from the position λA to λB with a given protocol λ(τ). The work
spent in the process corresponds to the work done by the system on
the external device changed in sign

W [xt] =
∫ t

0
dτ

∂H(x, λ)

∂λ
λ̇. (28)

For a general nonequilibrium process, the work W is a functional of
the path xt followed by the system during the experiment, while for
an infinitely slow, reversible process it is identical to the free energy
change �F = FB − FA. We also consider the time-reversed sched-
ule, in which the system starts from the equilibrium corresponding
to the device position λ = λB,

pB(x) = eβ(FB−H(x,λB)) (29)

and then the latter is moved to λA using a time-reversed protocol.
At the end of 1990s Crooks showed that the work W measured

during an experiment and the free energy difference �F = FB −FA

between the final and the initial states of the transformation are
related by22

W [xt] = �F + β−1 ln
PF[xt]
PB[x̃t] (30)

for each path xt followed by the system. Here, PF[xt] is the prob-
ability of observing the path xt in the “forward” experiment while

PB[x̃t] is the probability of observing the time-reversed path x̃t dur-
ing the “backward” experiment, as obtained by averaging over two
sets of repeated experiments. Unfortunately, despite the fact that the
work can be easily determined in a single molecule numerical (and
real) experiment, it is actually impossible to drawn the probability
of occurrence of single path from any kind of measurements. How-
ever, it is possible to express this relation in a more manageable
form. Exploiting the fact that W [x̃t] = −W [xt], and summing over
the paths xt yielding the same work W one obtains the so-called
work fluctuation theorem (WFT)

W = �F + β−1 ln
PF(W)

PB(−W)
, (31)

where PF(W) denotes the probability of a measuring work value W
during a forward experiment and PB(−W) the probability of mea-
suring a work −W during the backward experiment. Note that, due
to the time reversal symmetry, the opposite of the work is consid-
ered for the backward work distribution, i.e., PB(−W) is the mirror
symmetric with respect to PB(W). The WFT can be considered as
a probabilistic restatement of the second law of thermodynamics:
the probability of observing a positive dissipation Wd = W − �F
during a nonequilibrium experiment is eβWd times the probability
of a negative dissipation −Wd in the time-reversed experiment. The
Jarzynski equality21 (JE) can be obtained from the WFT simply
integrating out the work variable W . It reads

e−β�F = 〈e−βW 〉, (32)

where 〈. . .〉F denotes an average over one of the work distributions.
The WFT and the JE hold for an arbitrary nonequilibrium process, no
matter how fast it is performed. In particular, if the nonequilibrium
realization is instantaneous, i.e. if it is done at infinite speed, then
the work done on the system is simply equal to W = VB − VA,
with VA and VB being the potential energy of the initial and final
states, respectively. In this case the JE reduces to the well-known
free energy perturbation formula44 〈e−β(VB−VA)〉A = e−β�F , where
〈. . .〉A denotes a canonical average in the equilibrium state A.

According to eq. (31), �F corresponds to the work value W∗
for which PF(W∗) = PB(−W∗), as it has been verified through
statistical sampling of nonequilibrium realizations made with iden-
tical time schedule in optical tweezers experiments45 and numerical
simulations.46, 47 However, for fast nonequilibrium realizations, a
large amount of work, rather than in advancing the reaction coor-
dinate, is dissipated as heat into the system. As a consequence,
the maxima of the work distributions PF(W) and PB(−W) tend
to get farther apart from each other so that the determination of
�F becomes less accurate, as it is shown in Figure 4. For a nearly
quasi-static process one can expect the work distributions PF(W)

and PB(−W) to be two Gaussian functions. In this approximation,
because of the WFT, the distributions have the same variance σ 2,
and the average dissipation can be written as 〈W〉 − �F = βσ 2/2.
The distance between the two maxima can be expressed as �W =
〈W〉F − 〈−W〉B = 〈W〉F + 〈W〉B = βσ 2. To evaluate �F = W∗ as
PF(W∗) = PB(−W∗), the distance �W must not be much greater
than two times the standard deviation σ , �W ∼ 2σ , as shown in
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Figure 4. Examples of work distributions for different pulling speeds.
For nearly reversible processes (left panel) the work distributions PB(W)

and PB(−W) for forward and backward experiments overlap signifi-
cantly. The dotted line is the work distribution PB(W) for the backward
process. The crossing of the two solid distributions occurs at the free
energy value for the forward process,�F = 1. When the process is faster
(right panel), dissipation is larger both in the forward and in the back-
ward process, and the distance �W between the two maxima increases.
When �W � kBT , the overlap is negligible and the crossing point can
no longer be easily identified.

Figure 4. Equating the two relations for �W one finds an opti-
mal average dissipation for a precise evaluation of the free energy
difference �F:

〈W〉 − �F ∼ σ ∼ 2/β. (33)

This is the main reason of the success of these methods in the field
of micro-manipulations, where dissipation can be found to be of the
order of thermal fluctuations.45

The JE [eq. (32)] is seemingly a simpler route than the WFT
[eq. (31)] to evaluate the full free energy profile along a given reac-
tion coordinate. The exponential average involved in the JE can be
estimated as

�F∗ = −β−1 ln

(
1

N

N∑
i=1

e−βWi

)
, (34)

where �F∗ is an estimate of the true free energy difference. How-
ever, JE is an asymptotically unbiased estimator for �F: for any
finite number N of realizations, �F∗ contains a systematic error48

that grows with increasing the variance of the work distribution
P(W) and decreases with N . In practice, for dissipative nonequilib-
rium realizations, the average in eq. (34) is de facto controlled by
low work values that correspond to the left tail of the work distri-
bution.23 As a consequence, a free energy profile estimated using
the JE becomes more and more biased as the control parameter
is advanced, since the dissipative work is accumulated during the
experiment increasing the variance of the distribution.

It is now well established that approaches based on WFT are far
more precise than the JE to evaluate free energy differences.49–51 As
we said, the free energy difference between two states can be eval-
uated through the WFT as �F = W∗, where W∗ is the work value

such that PF(W∗) = PB(−W∗). More generally, it has been shown
that a bidirectional approach, in which the number of available
experiments is partitioned between the forward and the backward
transformations is statistically more founded. The free energy dif-
ference between two states can be written in terms of a general
function of the work f (W) as52

�F = −β−1 ln

( 〈f (W)〉F

〈f (−W)e−βW 〉B

)
, (35)

where the symbols 〈. . .〉F and 〈. . .〉B denote averages over the nF

forward and the nB backward work measurements. The function
f (W) = [1 + nF/nR exp(β(W − �F))]−1, corresponds to the so-
called Bennett acceptance ratio method.53 It minimizes the statistical
variance in the estimate53 and gives the maximum likelihood esti-
mate �FMLE of the measured data, that is, the value that maximizes
the probability of measuring the observed work values.24 At vari-
ance with the JE, this is a bidirectional approach, since it is based on
both forward and backward sets of work measurements. As such,
however, the WFT allows one to compute only �F between the end
states. From this point of view, the JE is much more useful because
it provides the whole free energy profile.

To bypass this limitation, various bidirectional methods have
been presented that provide the estimate of the PMF with an error
comparable to eq. (35) and, therefore, much lower than the JE. Here
we report the formula proposed in ref. 49:

�F(λ) = −β−1 ln

(〈
nFe−βW(λ)

nF + nBe−βW+β�F

〉
F

+
〈

nBeβW−βW(λ)

nF + nBeβW+β�F)

〉
B

)
, (36)

where �F(λ) = F(λ) − FA is the free energy difference between
a state corresponding to a generic value of the control parameter
λ and state A, and W(λ) denotes the work spent in moving the
control parameter to λ starting from its initial value, λA in a forward
experiment and λB in a backward experiment.

An alternative, formally simpler estimator based on the Bennett
acceptance ratio [eq. (35)] and on work exponential averages in both
forward and backward directions of the process was proposed very
recently51:

�F(λ) = −β−1 ln
[〈e−βWF(λ)〉F/2 + e−β�F〈e−βWB(λ)〉B/2

]
.
(37)

In eqs. (36) and (37), the free energy difference �F must be deter-
mined by eq. (35). Generalized forms of eqs. (36) and (37), valid
for generic thermal changes, have also been derived.54

Implementation in ORAC

SMD is implemented in ORAC by adding an external driving
potential to the original Hamiltonian of the system,

V(z, λ) = K

2
(z − λ)2. (38)
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As we discussed earlier, this potential can be regarded as the poten-
tial of interaction between the system and a virtual experimental
device through which external forces are applied to the system, just
like the elastic cantilever in atomic force microscope experiments.
The position of the device, λ, corresponds to the equilibrium of
the harmonic potential, and it is externally manipulated during a
nonequilibrium experiment. The work spent in moving the device
from λ(0) = λA to λ(t) = λB can be approximated using eq. (28)
as a sum over time-steps

W = K
∑

τ=0,�t,2�t,...,t−�t

(λ(τ ) − z(τ ))(λ(τ + 1) − λ(τ)). (39)

To estimate a free energy difference through one of the methods
shown in the previous paragraph, one set (for the JE) or two sets (for
the WFT) of independent work measurements are needed. The initial
equilibrium distributions of microstates for these measurements can
be saved as restart files (either during a standard molecular dynam-
ics simulation or by some enhanced simulation technique) while
restraining the system in state A or state B by the harmonic poten-
tials V(z, λA) and V(z, λB), respectevely. Having produced the work
data in a series of bidirectional experiments, one can then apply the
Bennett formula, eq. (35), to compute the free energy difference
between the reactants and the products states, and, using the inter-
mediate work values W(λ), apply Eq. (36) or eq. (37) to reconstruct
the entire potential of mean force along the driven trajectory.

In ORAC , the reaction coordinate z may be defined in input in
the form of a stretching, bending or a torsion by arbitrarily choosing
two, three of four atoms in the list of the solute atoms. The system
can also be driven along multiple coordinates at the same time, using
more than one moving harmonic restraint

V(z, λ) =
∑

i

Ki

2
(zi − λi)

2. (40)

The total work can be computed as a sum over the reaction coordi-
nates, W = ∑

i Wi, where Wi is the work spent in moving the ith
restraint along the ith reaction coordinate.

The default choice for the steering protocol is the linear one,
λ(τ) = λA + τ(λB − λA)/t. However, arbitrary protocols can be
used by providing an auxiliary input file where the trajectory of the
device in the space of the reaction coordinates is defined. The file
must contain a series of rows, each formed by a time t and a vector
that defines the position of the device at time t. An example for a
bidimensional case is shown in Table 1.

In principle, the free energy profile estimated from work
data where the external forces are supplied by an external
potential V is given by F(λ) ∝ −β−1 ln

∫
dx exp(−βH(x) −

βV(z, λ)), and is different from the original profile F0(λ) ∝
−β−1 ln

∫
dx exp(βH)δ[z(x) − λ]. However, for an harmonic

restraining potential, it can be shown that46

F0(λ) = F(λ) + 1

2K
F ′(λ) − 1

2βK
F ′′(λ) + O(1/K2) (41)

Table 1. Format of a File Defining an Arbitrary Time Protocol for a
Curvilinear Path in a Bidimensional Reaction Coordinates Space.

t1 r(t1) θ(t1)
t2 r(t2) θ(t2)
t3 r(t3) θ(t3)
. . . . . . . . .

tn r(tn) θ(tn)

For a generic coordinate λ, the steering velocity between times tk and tk+1

is constant and equal to vλ(tk) = (λ(tk+1) − λ(tk))/(tk+1 − tk).

and therefore that, if the force constant K is large enough, the biased
free energy F(λ) practically coincides with the original free energy
profile F0(λ).

The current release of ORAC allows the user to simulate “ther-
mal changes”, that is, nonequilibrium experiments in which the
temperature of the thermostat surrounding the system is changed
with a given protocol. In an ideal, equilibrium change, the system
is always in equilibrium with the temperature of the environment
and the microstates resulting from a set of realizations are canoni-
cally distributed at the final temperature. However, when the change
is performed in a finite time, generally the final distribution is
not an equilibrium, canonical distribution, and relations similar to
eqs. (31) and (32) are needed to extract equilibrium informations
from nonequilibrium experiments. Even if the idea of extending
the WFT and the JE to thermal changes dates back to the end
of the 1990s,55, 56 their application to Nosé-Hoover thermostatted
dynamics recent.57–59 “Thermal steering” can be done concurrently
with mechanical steering and is simply implemented by specify-
ing in input the initial and final temperatures, TA, TB in a NVT
Nosé-Hoover simulation. Then the driven temperature of the Nosé-
Hoover thermostat varies at a constant rate (TB − TA)/t, where t is
the length of the experiment. A “thermal work” can be related to
the free entropy difference �ψ = ln Z(TB)− ln Z(TA) between the
system at temperature TB and at temperature TA by the relation

Wth[xt] = −�ψ + ln
PF[xt]
PB[x̃t] . (42)

The thermal work along a trajectory xt of the system is defined
as57, 58 W [xt] = βBH(x(t)) − βAH(x(0)) − 1/2 ln(βB/βA), where
H(x) includes the energy of the system and the energy associated
to the Nosé-Hoover thermostat and x(0) and x(t) are the initial and
final microstates of the trajectory xt .

Program Distribution and Documentation

Program source files are distributed freely at http://www.chim.unifi.
it/orac under the terms General Public License (GPL) (http://www.
gnu.org/licenses/gpl-2.0.html). Note that the GPL requires that
derived work be licensed under the GPL too.

The code comes as a compressed tar file orac5.0.tar.gz.
The distribution includes the source files and a Makefile, force field
libraries, the program manual (reference and guide) in pdf and
html formats and several input examples covering the basic fea-
tures as well as the novel features of the code. ORAC has been tested
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on Linux platforms with the MPICH2 and OpenMPI implementa-
tion of the standard MPI communications protocol. A number of
source files in the distribution need to be preprocessed (by CPP)
in order to include problem-specific parameters that control the
generation of a parallel code. ORAC has been written mostly in
FORTRAN77. The present release 5.0 includes some FORTRAN90
code and can no longer be compiled with the g77 compiler. Appro-
priate compiler options for a few popular fortran compilers (gfortran,
g95, Intel® fortran compiler, IBM xlf) and computer architectures
(Linux based architectures, AIX) are provided in the GNU-make
configuration file, which can be easily extended by the user for
different computational environments.

For all technical aspects covering installation, I/O communi-
cations, usage and testing, we refer to the distribution archive
orac5.0.tar.gz and to the documentation therein.
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