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ABSTRACT: Synthetic N-glycosylated CSF114(Glc) and related peptides were
proved to be able to recognize specific and high-affinity autoantibodies circulating in
blood of relapsing-remitting multiple sclerosis (MS) patients and correlating with
disease activity. The effect of these peptides has been linked to the β-turn structure
around the minimal epitope Asn(Glc). In this work we performed Hamiltonian
replica exchange molecular dynamics simulations on the central heptapeptide
fragment of a CSF114(Glc)-derived peptide in water and in a water/
hexafluoroacetone mixture, confirming a significant incidence of β-turn structures
in both solvents. The structural similarity of the glycosylated and unglycosylated
forms in all environments proves that the conformation of the heptapeptide is only
marginally affected by the presence of the sugar. Moreover, the presence of a
significant amount of bioactive hairpin-like conformations in the water environment
suggests a possible use not only in the diagnosis but also in the treatment of MS.

■ INTRODUCTION
Multiple sclerosis (MS) is a chronic, highly disabling disease
characterized by an autoimmune reaction destroying the myelin
sheath that electrically insulates neurons.1 Subsequent prob-
lems in the transmission of nerve signals result in a situation of
progressive paralysis that in some cases determines a premature
death. Multiple sclerosis currently affects over 400 000 patients
in Europe,2 typically in the most productive age of life (20−40).
The progressive impairment of work ability and constant efforts
required from caregivers both contribute to the high social
burden of this disease.
While a specific therapy is not yet available, an early

treatment with interferon β-1b was proved to delay progression
of the disease,3 highlighting the importance of early diagnosis.
Diagnosis of MS, however, is far from trivial since the initial
symptoms are heterogeneous and often mild. Magnetic
resonance imaging (MRI), a technique allowing physicians to
identify lesions in the patients’ brain, proved to be a powerful
diagnostic tool.4 Unfortunately the high cost of the equipment
for MRI prevents the use of this technique for a large-scale
screening of the population. This makes immunologic assays a
viable and an attractive alternative. Immunoassays are based on
the evidence that autoantibodies appear in the blood long
before the onset of clinical symptoms,5 so that monitoring of
these biomarkers not only enables an early diagnosis but also
anticipates relapses of the disease, allowing the physician to take
action to delay or alleviate the effects of the attack.
A significant headway along this line of investigation was

achieved by Papini and co-workers, who developed a synthetic
glycopeptide, CSF114(Glc), capable of identifying autoanti-

bodies in sera of patients of a MS disease form possibly
corresponding to the relapsing-remitting form.6 The seminal
observation leading to the design of CSF114(Glc) was that
while the immuno-dominant epitope of MOG [Asn31(Glc)]
hMOG(30−50) was able to detect autoantibodies in MS
patients, its unglycosylated analogue was inactive.7 This
suggested that the glucose moiety could be possibly an
aberrant post-translational modification reminiscent of a
bacterial and/or viral infection, leading to autoantibodies
production. The hypothesis of a direct interaction of the Glc
unit with the autoantibodies was confirmed by the fact that the
glycosylated and unglycosylated variants of hMOG(30−50)
adopted similar solution conformations,8 thus ruling out the
possibility that the presence of the sugar could stabilize a
different native state.
Recognition of the importance of the sugar led Papini to

engineer the sequence of hMOG(30−50) in order to stabilize
the β-turn structure around the minimal, fundamental epitope
Asn(Glc).
The resulting antigenic probe, CSF114(Glc), proved to be

able to recognize, by ELISA, the presence of specific IgM
autoantibodies in the sera of a MS patient population but not in
blood donors and other autoimmune conditions.
The affinity of CSF114(Glc) for MS autoantibodies was

further substantially increased by changing the amino-acid
sequence around the glycosylated residue to ones that are
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known to stabilize β-turn type I, II, or II′.9 Moreover, it was
proved that the N-glycosylated heptapeptide [Ac-ERPN(Glc)-
HTV-NH2], apical fragment of an engineered version of
CSF114(Glc), retains the immunological properties of the
parental peptide and the active β-hairpin conformation, as
revealed by solid-phase ELISA.
The structure of CSF114(Glc) and the derived peptides was

determined through NMR spectroscopy in two different
solvents:6,9 water and a 50% vol/vol mixture of water and
hexafluoroacetone (HFA). While in pure water the peptides
under investigation have been found mainly unstructured, in
the water/HFA mixture they are believed to adopt the active
hairpin conformation. The use of fluoro-alcohols as stabilizing
agents for peptides is a common practice in biochemistry10,11

that relies upon the assumption that the fluoro-alcohol mimics
some specific biological or experimental environment. In the
case of the family of peptides derived from CSF114(Glc) it was
suggested that the water/HFA solution might reproduce the
environment of the solid substrate of the ELISA test.12

However, interpretation of NMR spectra of highly flexible
molecules such as the CSF114(Glc)-derived peptides in
solution could be a rather challenging task since torsions
about a chemical bond (that occur on a time scale of
nanoseconds) cause most NMR parameters (e.g., NOE,
coupling constant, chemical shifts) to be averaged out rather
than giving a superposition of values as, e.g., in optical
spectroscopy.13 As a consequence, it might well be that
CSF114(Glc) adopts the β-hairpin conformation also in water,
where, however, the structure is not detectable through NMR
because the conformations interconvert too rapidly.
This issue can effectively be addressed through an accurate

and unbiased exploration of the equilibrium ensemble of the
glycosylated heptapeptide in the two solvents by means of
accurate molecular dynamics simulations at the atomistic level.
Also, the effect of the glucose unit on the structure of the
heptapeptide can be assessed by comparing the simulations of
glycosylated and unglycosylated forms. As stated above, such
engineered peptide is as effective as its parent CSF114(Glc)
compound in immunological assays and, due to its small size,
lends itself well to a computational study. A realistic and
detailed description of the structural and kinetic properties of
Ac-ERPN(Glc)HTV-NH2, such as that provided in the present
study, may be of great help in rationalizing the bioactivity of
this class of MS-related peptides.
Efficient sampling of the conformational space of proteins

and peptides using molecular dynamics (MD) simulations is a
challenging task because these molecules are characterized by a
high-dimensional, rugged energy landscape featuring a huge
number of local minima that may act as kinetic traps. This
problem can be overcome using generalized ensemble methods
such as replica exchange molecular dynamics (REMD) that
allows a random walk in energy and temperature.14

In this study, at variance with a previous work on solvated
peptides,15 we adopted a Hamiltonian REMD approach, based
on the unequal scaling of the potential function terms.16 The
results of our REMD simulations are in good agreement with
available experimental data.9 When the glycosylated and
unglycosylated heptapeptides were simulated in the same
solvent, we found a significant superposition for the probability
distributions of all the structural parameters we monitored.
This is due to the fact that the glucose unit, being rich in polar
hydroxyl groups, interacts preferentially with the water without
interfering too much with the folding of the peptide. This

suggests that the sugar has only a minor effect on the folding of
the chain, supporting the idea of a direct interaction between
the glucose ring and the binding pocket of the MS
autoantibodies.
More importantly, comparison of the equilibrium ensembles

of the glycosylated peptide in water and water/HFA revealed
that the fraction of hairpin-like conformations is basically the
same in the two solvents. The expected structuring effect of
HFA, in fact, does not increase the fraction of hairpin
conformations but rather determines the appearance of a
motif with a curved peptide chain and the sugar pointing
toward the interior of the loop. Our data thus suggest that the
NMR measurements may have underestimated the amount of
hairpin conformations in water, possibly due to the short times
of conformational transition. This hypothesis was confirmed by
a kinetic clustering of the population using a Markov state
model.17 This approach showed that in the solvent mixture a
large amount of the hairpin conformations are sequestered in a
metastable state separated by a high energy barrier from
another metastable state including the rest of the population.
By contrast, in water only a single metastable state exists and
hairpin conformations can be turned into any other structural
motif at a very high rate. The presence of a high fraction of
hairpin conformations in the water simulations may have
important pharmaceutical implications, suggesting the use of
CSF114(Glc) derivatives not just as probes of MS biomarkers
in diagnostic assays but as drugs for treatment of the disease.
The paper is organized as follows. In the Methods section we

provide details about our computational protocol. In the
Results section we comment on the main results of our
simulations, starting with a discussion on the conformational
ensembles of the bioactive glycopeptide in the two solvents,
then performing a kinetic analysis by means of a Markov state
model, and finally reviewing the main results concerning the
effect of glycosilation of the peptide on structural features. In
the Conclusions section we draw the conclusions of our work.

■ METHODS
In Table 1 we report the sequence of the heptapeptide system
simulated in this study and the nomenclature that will be
hereafter adopted.

Molecular Dynamics. Four systems have been set up and
simulated, namely, the glycosylated and unglycosylated
heptapeptide in water and a 50% in volume mixture of water
and HFA. All simulations have been performed with the ORAC
suite of programs16,18 using the Amber ff99SB force field19 and
the TIP3P water model.20 The parameters for the glucose unit
have been taken from the GLYCAM06 force field for
carbohydrates.21 At variance with previous versions, in
GLYCAM06 the 1−4 electrostatic and nonbonded scaling
factors were set to unity in order to correct for the unbalance of
the O6−O4 and O6−O5 interactions determined by 1−4
scaling. Simulation of a glycopeptide system such as ours
requires a mixing of the GLYCAM force field with the Amber
amino acid force field. Following the suggestion of the Amber9

Table 1. Peptide Sequences and Abbreviations Used in the
Text

peptide sequence abbreviation

Ac-ERPNHTV-NH2 Hepta
Ac-ERPN(Glc)HTV-NH2 N4(Glc)Hepta

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp301442n | J. Phys. Chem. B 2012, 116, 5458−54675459



manual,22 we retained the scaling factors typical of protein
systems (a 5/6 scaling factor for electrostatic interactions and a
0.5 scaling factor for van der Waals interaction). This might
cause the loss of accuracy in the populations for the omega
angle rotation (O5−C5−C6−O6) and in the corresponding
barrier heights, but it affects only marginally the overall
carbohydrate structure or stability (see Supporting Information,
section Comparison GLYCAM06/Amber for β-D-glucopyra-
nose in water solution). Force field parameters for the HFA
were derived using the Antechamber package22 and are detailed
in Tables 1−5 of the Supporting Information (section
Parameters of HFA).
Peptides were built in the extended conformation using the

xLEaP program22 and minimized in vacuo to remove atomic
clashes. For the simulations in water the peptide was solvated
with 972 water molecules in a simple cubic box with periodic
boundary conditions. The system was then equilibrated during
a 100 ps simulation in the isothermal−isobaric ensemble at T =
300 K and P = 1 atm. Constant pressure was obtained using a
modification of the Parrinello−Rahman Lagrangian,23 and
temperature control was achieved using the Nose ́ thermostat.24
Electrostatic interactions were computed using the smooth
particle mesh Ewald algorithm with the convergence parameter
set to 0.43 Å−1 and a grid spacing of 1.2 Å.25 The equations of
motion were integrated using a multiple time step r-RESPA
algorithm26 with a potential subdivision specifically tuned for
biomolecular systems.18,23

Before simulating the peptide in the water/HFA environ-
ment a preliminary simulation was run to test the solvent
mixing. Details of this simulation along with a discussion on
microsolvation effects are reported in the Supporting
Information (section Microsolvation effects). Once the solvent
mixing was ascertained, the glycosylated and unglycosylated
peptides were immersed in a simple cubic box where the system
containing 1 HFA·H2O (geminal diol) and 10 water molecules
had been replicated 64 times. Since the solvent molecules
clashing with the peptide were discarded, the heptapeptide was
finally solvated with 59 HFA and 590 water molecules. The
system was then equilibrated in a 100 ps NPT run using the
same protocol employed for equilibration in the water
environment. The last conformation produced by these
simulations was then used as the input for the REMD
simulation.
REMD simulations were performed using the Hamiltonian

REM approach.27,28 With Hamiltonian REMD one can
compute the acceptance probability of the exchanges based
on the energy of a relevant subset of the degrees of freedom of
the investigated system. This is achieved by partitioning the
energy in a number of additive contributions (in the ORAC
implementation, bonded, torsional, and nonbonded terms)
weighted by different scaling factors that change along the
replica progression. In our case, the bonded term that is
expected to play only a minor role in conformational changes
was left unscaled, no longer contributing to the exchange
probability that therefore depends only on the torsional and
nonbonded degrees of freedom. Conversely, the scaling factor
of the nonbonded potential was assigned exponentially
decreasing values ranging from 1.0 (in the target replica) to
0.5, the latter corresponding to an effective temperature of 600
K. The scaling factor for the torsional term was chosen
according to the specific environment where the peptide was
simulated. For the water simulations we set the minimal scaling
factor to 0.1 corresponding to a maximal effective temperature

of 3000 K, which enabled an effective overcoming of all energy
barriers using only 24 replicas. This setting however turned out
to be unsuitable for simulation in the water/HFA mixture since
it led to an insufficient overlap between the torsional energy
distributions of neighboring replicas. This is why in the solvent
mixture the torsional scaling factor was increased to 0.3, thus
decreasing the maximal effective temperature to 1000 K, and
the number of replicas was raised to 32. The new setting
determined a more extensive superposition between the
torsional energy distributions, improving the acceptance ratio
of the exchanges.
Exchanges were attempted every 250 fs, leading to an average

acceptance ratio of 28%. The N replicas are sorted in an array
based on their vectors of scaling coefficients. One-half of the
replicas (with even array indices) are chosen as exchange
initiators. These initiators pair with their right and left
neighbors alternatively at each call of the REM subroutine, so
that N/2 exchanges are attempted at each iteration. The total
simulation length was 24 ns per replica for simulations in pure
water and 92 ns per replica for simulations in water/HFA. The
longer time required to reach convergence in the simulations in
water/HFA is due to the higher viscosity of the HFA/water
mixture with respect to water that results in a slowing down of
the exploration of the conformational space. In all four REM
simulations the first 25% of the trajectory of the target
(unscaled) replica was discarded and analysis was performed on
3600 structures (for the simulations in water) and on 14 000
structures (for the simulation in water/HFA) sampled at
regular time intervals. Extensive error analysis and convergence
tests for all four REMD simulations have been reported in the
Supporting Information (section Error analysis).

Quality Threshold Clustering. Structural insights on the
equilibrium population of the target replica can be attained
through a quality threshold clustering.29 This algorithm
requires a distance matrix for all pairs of structures of the
population. The structural metrics that we chose was the
maximum difference between corresponding pairs of carbon
atoms

= | − |d d S d Smax ( ) ( )S S
i j

ij m ij n,
,m n

where dij is the distance between carbon atoms i and j
belonging to structures Sm and Sn. A comparison of this metrics
with the more customary RMSD can be found in the
Supporting Information (see section Metrics and Clustering).
For each structure in the ensemble the algorithm builds a
candidate cluster in such a way that the distance between any
two structures of the cluster does not exceed the cutoff distance
(that we chose to be dcut = 6.0 Å). The program then retains
only the largest cluster and removes its structures from the
population. The procedure is iterated until all structures of the
populations are used.

Markov State Model. The dynamical characterization of a
macromolecule in solution requires the determination of the
long-lived, metastable states and the transition rates between
them. Clustering algorithms group a population in subfamilies
based on their geometric features that, however, might not
necessarily correspond to kinetic properties. In fact, two
conformations belonging to the same cluster may be geometri-
cally close but kinetically distant, being separated by an energy
barrier. Markov state models (MSM) perform a kinetic
clustering, assigning to the same cluster only structures capable
of fast conversion between each other.17,30 At first glance MSM
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seem not to be applicable to generalized ensemble simulations
that perform a random walk in temperature space and thus have
no physical kinetics. However, the data of the target replica
feature the canonical distribution at the temperature of interest,
and thus, they contain information on all energy barriers
responsible for separation of time scales. It is thus possible to
identify metastable states (also referred to as macrostates) that
are characterized by fast intrastate transitions and slow
interstate transitions. Pande and co-workers recently developed
software to extract dominant metastable states from generalized
ensemble simulations (MSMBuilder package, available at
https://simtk.org/home/msmbuilder). The algorithm first
divides the population in a set of small microstates based on
their geometric features and then lumps the microstates in
larger metastable states based on kinetic features.31

The first step of the algorithm is based on the idea that as
long as the cutoff radius of a cluster is sufficiently small two
structures belonging to the same cluster are so structurally
similar that they must quickly interconvert between each other.
We performed this step using the quality-threshold clustering
with the metrics dSm,Sn applied to carbon atoms only. We chose
a cutoff of 6.0 Å, which leads to clusters with an average
pairwise RMSD of carbon atoms of 1.5−2.0 Å (See Supporting
Information, section Metrics and Clustering).
The second stage of the algorithm, lumping of microstates

into macrostates, is based on the idea that if the equilibrium
population is partitioned into k metastable states with fast
intrastate kinetics and slow interstate kinetics, then the
dynamics of the system can be modeled in terms of a nearly
uncoupled Markov chain. In such a case it can be proved32 that
the spectrum of the transition matrix can be divided into 3
parts: (i) the Perron root λ = 1; (ii) a cluster of k − 1
eigenvalues approaching 1; (iii) the remaining n − k
eigenvalues (n is the number of the microstates) with values
very different from 1. The eigenvectors of the transition matrix
will also be divided in three corresponding groups: (i) The
eigenvector corresponding to the Perron root X1 = (1, ...,1); (ii)
the k − 1 eigenvectors corresponding to eigenvalues close to λ
= 1. These eigenvectors are of the form Xi = ∑j = 1

k αijχAj
, where

the αij are real numbers and χAj are the characteristic functions
of the k metastable states. This implies that except for small
perturbations these eigenvectors feature a piecewise constant
structure that allows identification of the metastable states. (iii)
Finally, there are n − k remaining eigenvectors associated to the
eigenvalues bounded away from 1. For identification of
metastable states it is thus crucial to identify the Perron cluster
eigenvalues and the corresponding eigenvectors. Fortunately
this task can be easily accomplished since the Perron cluster
eigenvalues are separated by a spectral gap from the remaining
eigenvalues.
The existence of the spectral gap is the basis for identification

of the number of metastable states. Basically the algorithm first
computes the matrix of transition probabilities between
microstates. The entries of this matrix represent the probability
of going from microstate i at time t to microstate j at time t + τ.
The transition matrix eigenvalues are computed for different
values of the lag time τ: as τ → ∞ the matrix will converge and
its eigenvalues become constant too. As a consequence, if the
implied time scales τk = −τ[ln λk]

−1 are plotted as a function of
the lag time, the time scales will level out, showing a major gap.
The gap corresponds to the largest separation of time scales:
the time scales above the gap correspond to transitions between

macrostates, whereas those below the gap represent transitions
within macrostates. This predicts the number of macrostates to
be one more than the number of implied time scales above the
gap. Once the number of macrostates is determined, a first
guess of the assignment of microstates to macrostates can be
attained by means of a Perron cluster cluster analysis (PCCA)33

based on analysis of the piecewise constant structure of the
eigenvectors associated to Perron cluster eigenvalues. The
assignment of microstates to macrostates is then fine tuned
through a Monte Carlo simulated annealing procedure aimed at
maximizing the metastability Q = ∑i = 1

k Tii, where Tii is the self-
transition probability for metastable state i. In each step of the
Monte Carlo run a randomly chosen microstate is tentatively
assigned to a random macrostate. The move is accepted with
probability min[1,eβΔQ], where β is set equal to the step
number, corresponding to a decrease in the effective temper-
ature. Once microstates have been assigned to macrostates it is
then possible to compute the transition probabilities between
macrostates

π

π
=

∑

∑
∈ ∈

∈
W A B

p
( , ) a I b I a ab

a I a

,A B

A

where W(A,B) is the probability of transition from macrostate
A to macrostate B, πa is the stationary probability of being in
microstate a, pab is the conditional probability to move to state
b provided that the system is in microstate a, and IA and IB
denote the index sets corresponding to A and B, respectively.

■ RESULTS
N-Glycosylated Peptide in Water and Water/HFA.

Since the presence of the glucose unit turned out to be essential
for recognition of the MS autoantibodies, our discussion is
focused on the description of the conformational ensembles of
the glycosylated heptapeptide Ac-ERPN(Glc)HTV-NH2 in
water and a 50% in volume mixture of water and HFA. As
the biologically active conformation is expected to be, to some
extent, hairpin-like, we first analyzed the end-to-end distance of
the peptide in the two solvents (Figure 1). The probability
distributions of this property in the two solvents are vastly
overlapping, with a single high peak at about 18 Å, suggesting
that the majority of conformations in the equilibrium ensemble

Figure 1. Probability distributions of the end-to-end distance of the
glycosylated peptide in water (black curve) and the 50% volume
mixture of water and HFA (red curve).
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are extended. However, the distribution in water shows slightly
higher probability values in correspondence of very large and
very small values of the end-to-end distance, while in the water/
HFA mixture the intermediate values of this structural
parameter are more populated. This result not surprisingly
suggests that the extended conformation is favored in water
where the backbone and side-chain groups of the peptide can
establish hydrogen bonds with the polar solvent.
In order to locate the position of a possible β-turn we

monitored the set of all possible Cα(n)−Cα(n + 3) distances in
the peptide (a β-turn exists when this distance is below 7 Å34).
A discussion of the merits and limitations of this criterion along
with a more detailed classification of the β-turn types of our
peptides can be found in the Supporting Information (section
β-turn types) .
Figure 2 shows the probability distributions of the Cα(n)−

Cα(n + 3) distances in the glycosylated peptide in water and the

HFA/water mixture. It can be noticed that such distributions
are strikingly similar in the two solvents. Moreover, as one
moves from the N-terminus to the C-terminus of the peptide
the area under the distribution below the threshold distance of
7 Å tends to increase, which suggests that the most likely
position for the β-hairpin is near the C-terminus. In order to
quantify the mean curvature in correspondence of Cα(i) we
considered the triangle having vertexes on the three subsequent
α carbons: Cα(i − 1), Cα(i), Cα(i + 1). The curvature can be
simply quantified as the ratio rc between the base (the distance
Cα(i − 1)−Cα(i + 1)) and the height of the triangle. If the
peptide is locally extended, the curvature ratio tends to infinity,
while small values of the ratio are the signature of curved
regions. A more detailed discussion on this indicator can be
found in the Supporting Information (section Curvature ratio) .
Figure 3 reveals the existence of a gradient of curvature that
tends to increase from the N-terminus to the C-terminus of the
peptide. The highest curvature can be detected on His5, where
the distribution shows a single sharp and very high peak at rc =
2 and the probability density is larger than 0.8. Pronounced but
less populated peaks at rc = 2 can also be observed at Asn4 and
Thr6, confirming the preferential location of a loop near the C-
terminus. Once again, we must stress here the similarities of the

curvature distributions of the glycosylated peptide in the two
solvents, pointing to a common β-turn conformation with
vertex on His5.
An important structural indicator is the relative position of

the saccharide and peptide components of the glycopeptide.
This can be measured by the distance dGP between the center of
mass of the glucose ring and the center of mass of the peptide:
large values of dGP refer to β-turn or bent structures with the
glucose unit pointing away from the loop; small values are
indicative of conformations where the glucose unit is buried in
a partially folded peptide, while intermediate values are
compatible with extended/disordered structures. As we shall
see, this simple indicator reveals important conformational
differences of the peptide in the two solvents. Figure 4 refers to
the glycosylated peptide in the HFA/water mixture and shows
that, in this solvent, the probability distribution of this quantity
features three peaks relative to the indicative ranges 0−5, 5−10,
and 10−12 Å, roughly corresponding to 25%, 64%, and 11%,
respectively, of the whole equilibrium ensemble. It can
therefore be expected that in the HFA/water mixture three
structural motifs exist with different positions of the glucose
ring with respect to the peptide. This prediction that relies on
the simple dGP indicator can be confirmed by a partitioning of
the conformational space based on a more accurate metrics,
performed through QT clustering.29 The amounts provided
hereafter and in Table 2 derive from inspection of the 20 most
populated clusters (full details of clusters population are
reported in the Supporting Information, section Metrics and
Clustering).
Below we report the main results of the clustering analysis for

the glycopeptide in HFA/water mixture. The conformations
with the smallest distance between the center of mass of the
sugar and the center of mass of the peptide account for about
40% of the total conformational space and are exemplified by
the representatives of Cluster 1 and Cluster 3 depicted in
Figure 5. In this motif the peptide follows a trapezoidal profile,
that is, it is extended in the central region, from Arg2 to His5,
where it shows curvature points. The glucose ring is projected
toward the interior of the loop in order to establish hydrogen
bonds with the backbone and side-chain groups of the peptide.
This motif is presumably due to the existence of a transient
hydrophobic environment around the solute that induces the

Figure 2. Probability distributions of the Cα(n)−Cα(n + 3) distances
between pairs of residues of the glycosylated peptide in water (black
line) and the water/HFA mixture (red line). β-Turns are formed when
the distance is below 7.0 Å. Panels a, b, c, and d refer to distances
Glu1-Asn4, Arg2-His5, Pro3-Thr6, and Asn4-Val7, respectively.

Figure 3. Probability distributions of the curvature ratio of residues 2−
6 of the glycosylated peptide in water (black curve) and the water/
HFA mixture (red curve). Panels a, b, c, d, and e refer to Arg2, Pro3,
Asn4, His5, and Thr6, respectively.
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sugar to interact with the peptide (see also discussion in the
Supporting Information, section Microsolvation effects). The
hydrogen bonds established by the glucose then determine the
curvature of the backbone.
Figure 5 also shows the representative of Cluster 2 that

exemplifies the structures (about 40% of the total) with

intermediate values of the distance between the centers of mass
of the sugar and the peptide. In this motif the peptide is almost
perfectly extended and the glucose ring projects away from the
axis of the backbone. In this conformation the sugar
preferentially interacts with the solvent even if the tilting
toward the C-terminus of the side chain of the Asn-Glc unit
does not exclude the possibility of interactions between the
sugar and the peptide.
The third group of clusters, accounting for 17% of the

conformational ensemble and characterized by a high value of
the distance between the centers of mass of the sugar and the
peptide, is illustrated by the representative of Cluster 4. This
structure shows a typical hairpin-like conformation with a β-
turn between Pro3 and Thr6 (the distance between the Cαs of
these atoms is 5.7 Å) and the glucose unit pointing outside the
loop.
When the glycosylated heptapeptide is simulated in water,

the distribution of the dGP distance undergoes significant
changes with respect to that obtained in the simulation in the
HFA/water mixture, featuring a single peak (see Figure
4(bottom)). In the 2−5 Å interval the distribution only
shows a flat tail corresponding to 3.5% of the population,
suggesting almost complete disappearance of the curved motif
with the glucose oriented toward the interior of the loop.
Expectedly, a large share of conformations (85.5%) exhibit in
water dGP values in the intermediate range 5−10 Å,
corresponding to extended/disordered structures. Interestingly,
the area under the distribution in the 10−12 Å range still
corresponds to 11% of the population, indicating that the
amount of hairpin-like conformations does not appear to
change significantly on going from HFA/water to water, a
result that is indeed in agreement with the data reported in
Figures 2 and 3, pointing to a common β-turn conformation in
the two solvents.

Figure 4. (Top) Probability distribution of the distance between the
centers of mass of the glucose ring and the peptide in the HFA/water
mixture. Areas shaded in black, red, and green roughly represent the
three structural motifs, i.e., the curved motif with the glucose pointing
toward the interior of the loop, the extended conformations, and the
hairpin-like conformations. (Bottom) Probability distribution of the
distance between the centers of mass of the glucose ring and the
peptide in the pure water. Areas shaded in black, red, and green
roughly represent the three structural motifs, i.e., the extended motif
with a C-terminal loop, the extended conformations, and the hairpin-
like conformations.

Table 2. Structural Composition of the Equilibrium
Ensemble of the Glycosylated (N4(Glc)Hepta) and
Unglycosylated Heptapeptide (Hepta) When Simulated in
Water (W) and the HFA/Water (HFA/W) Mixture

peptide solvent extended, % hairpin, %
Curv +
GlcInt, %

extended +
C-loop, %

N4(Glc)
Hepta

HFA/
water

42 17 41

N4(Glc)
Hepta

water 70 17 13

Hepta HFA/
water

65 16 19

Hepta water 57 16 27

Figure 5. Representatives of the four most populated clusters of the
glycosylated heptapeptide in the water/HFA mixture. Panels a, b, c,
and d correspond to the representatives of clusters 1, 2, 3, and 4,
respectively.
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Cluster analysis reveals the existence of three main structural
motifs in water. The representative of Cluster 1, depicted in
Figure 6, is a typical example of the structures with the dGP

distribution in the 5−10 Å range. The peptide is fully extended,
and the side chain of the Asn-Glc unit projects away from the
axis of the peptide, tilting toward the C-terminus so that Oδ can
occasionally establish H bonds with the side chain and NH
backbone group of Thr6. These structures account for 70% of
the equilibrium population of the glycopeptide in water, while
they only amounted to 42% of the population in the water/
HFA mixture. This pattern is the expected result of the larger
polarity of water with respect to the water/HFA mixture: the
possibility to establish a large network of hydrogen bonds with
water discourages establishment of intramolecular interactions
in the solute. The increase in the fraction of extended
conformations in water with respect to HFA/water mixture is
compensated by the almost complete disappearance of the
curved structures with the sugar pointing toward the interior of
the loop. These structures are replaced in water by a motif,
accounting for 13% of the structures, where the peptide is
almost extended but features a loop near the C-terminus. This
motif is exemplified by the representative of Cluster 6,
appearing in Figure 6. In this structure the C-terminal curvature
is very pronounced and the distance between the Cαs of Asn4
and Val7 (7.10 Å) is just above the threshold of 7.0 Å defining
the β-turn. The third structural motif, corresponding to the dGP
distributions in the 10−12 Å range, is the hairpin-like
conformation exemplified by the representative of Cluster 5
and depicted in Figure 6, revealing structural similarities with
Cluster 4 in the HFA/water mixture (see Figure 5). As in
Cluster 4 for the HFA/water mixture, the glucose ring points

outside the β-turn but in water an H bond between hydroxyl 6
of the sugar and the C-terminal amide ending group is detected
with a high incidence. This bond, together with that of the
carbonyl of Asn4 with the same amide, induces a curvature of
the C-terminal strand of the hairpin, so that the two strands are
not parallel. Interestingly, the fraction of hairpin-like con-
formations based on clustering analysis is 17%, the same as that
observed in the water/HFA mixture. This finding does not
contradict the notion of the structuring effect of fluoro-alcohols.
However, it must be noted that the structuring effect of HFA
results in stabilization of the curved structures with the sugar
pointing inside rather than that of the biologically active hairpin
structures.

Conformational Kinetics by MSM. Conformational
analysis of the glycosylated peptide in water and the HFA/
water mixture reveals that the proportion of bioactive hairpin-
like conformation is basically the same in both solvents. This
result is seemingly in disagreement with NMR measurements
that indicate that in a water environment the peptide is in a
disordered, random coil conformation.9 A possible explanation
for this inconsistency relies on the high flexibility of the peptide
that in water could quickly interconvert between any pair of
conformations. If these conformational changes are faster than
the time required for two spins to interact, the signal could be
averaged over all conformations populated during the NMR
time scale thus causing the amount of hairpin conformations to
be underestimated.35 By contrast, if in the water/HFA mixture
the conformational transitions of the hairpin conformations
were somehow slowed down, then these structures could be
stable enough to be detected by NMR.
In order to test our working hypothesis, we used the

MSMBuilder package17,30 to build a Markov state model of the
glycosylated peptide in the two solvents.

MSM in Water. The microstates of the glycopeptide in
water correspond to the clusters identified through the quality
threshold algorithm29 with dcut = 6.0 Å (see Supporting
Information, section Metrics and Clustering), which led to
identification of 206 clusters. In order to determine the number
of metastable states we computed the first 80 eigenvalues of the
206 × 206 matrix of transition probabilities between micro-
states. The eigenvalues and thus the corresponding implied
time scales were computed for 180 different lag times (from a
minimum lag time of 5.0 ps to a maximum lag time of 900.0 ps
at intervals of 5.0 ps). The plot of implied time scales as a
function of lag time (Figure 7) reveals the existence of a single
gap above which only one individual time scale can be detected,
that is the time scale of transitions between two metastable
states. The other low-lying time scales conversely represent the
typical transition times between sub-basins inside the same
metastable state. Once it is ascertained that our system only
includes two macrostates, it is possible to lump together
kinetically related microstates using the Perron cluster cluster
analysis33 that exploits the peculiar structure of the eigenvectors
of the matrix of transition probabilities between microstates.
We used the simplex version of the PCCA algorithm (PCCA
+)36 that spared us the necessity to perform a refinement stage
through simulated annealing. Instead, we used the built-in
optimization routine of the PCCA+ algorithm. The PCCA
calculation assigned to the first macrostate only a single
microstate containing 4 hairpin-like conformations, while the
rest of the population was assigned to the second metastable
state. This results implies that in water practically all the

Figure 6. Typical structural motifs of the glycosylated peptide in water.
Panels a, b, and c show the representatives of clusters 1, 5, and 6,
respectively.
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population belongs to a single metastable state and any
structure can quickly interconvert into any other conformation.
MSM in HFA/Water. A similar analysis was performed on

the equilibrium population generated by simulation of the
glycopeptide in the water/HFA mixture. The quality threshold
clustering with dcut = 6.0 Å split the population in 193 clusters
so that a 193 × 193 matrix of transition probabilities between
microstates could be built. Figure 7(bottom) reports the first 80
implied time scales as a function of the lag time that was varied
from a minimum of 5 ps to a maximum of 5 ns in increments of
5 ps. From the plot it is not clear whether above the main gap
there are one or two main time scales. We therefore applied the
PCCA+ algorithm in the hypothesis of 2 and 3 metastable
states, choosing the scenario that guarantees the highest
metastability. The metastability Q is a heuristics for maximizing
the separation of time scales. The two-macrostate scenario
yields a metastability Q = 1.64, while in the case of three
metastable states we found Q = 2.08. Considering that the
maximum possible value of the metastability corresponds to the
number of macrostates, it is clear that the metastability is closer
to its maximum in the two-macrostate situation. The
microstate-to-macrostate mapping performed by the PCCA+
algorithm reveals that the first metastable state includes about
10% of the equilibrium population mostly comprising hairpin-
like conformations (88% of the population of the metastable
state), so that 52% of the hairpin-like structures of the whole
equilibrium ensemble belong to this macrostate. Conversely,
the second metastable state accounts for 90% of the equilibrium
population, and it includes all possible structural motifs.

Calculation of the transition probabilities between macrostates
reveals that the self-transition probabilities of the two
macrostates are 68% and 96%, respectively. Conversely, the
probability of transition from the hairpin-populated macrostate
1 to the more promiscuous macrostate 2 is 32%, and the
probability of the reverse transition is only 4%. In other words,
this scenario implies that a significant fraction of hairpin
conformations is sequestered in macrostate 1 and can rearrange
into structures of macrostate 2 only very slowly. This
stabilization of hairpin conformations is presumably the reason
why NMR spectroscopy can detect this motif in the water/
HFA mixture but not in pure water. This results is confirmed
by further data reported in the Supporting Information (see
section Comparison with NOE data), where we show that the
probability distribution of the distance HA(Pro)-HN(His)
(corresponding to an intense NOE interaction) has a marked
bimodal distribution in the water/HFA mixture with barrier
heights on the order of few kcal/mol along the distance
coordinate. Such bimodal behavior of the HA(Pro)-HN(His)
probability distribution is still present in water, although with
an attenuated free energy barrier.

Effect of the Glucose Unit on the Peptide Structure.
The fact that CSF114(Glc) specifically recognizes MS autoanti-
bodies while the unglycosylated counterpart cannot clearly
shows the importance of the glucose moiety for the
immunochemical reactivity of the peptide. The role of the
sugar could be due to either direct interaction with the
autoantibodies circulating in blood or stabilization of a different
native state corresponding to a structure sterically comple-
mentary to the binding pocket of the antibodies. This is why it
is important to compare the conformational ensembles of the
N-glycosylated heptapeptide (N4(Glc)Hepta) and unglycosy-
lated heptapeptide (Hepta). Such comparison is fully detailed
in the Supporting Information (section The effect of the
glucose unit), and we give here the salient results. The glucose
moiety in the HFA/water mixture has a moderate effect on the
conformational landscape. Its main effect with respect to the
unglycosylated variant is that of decreasing the incidence of
extended conformations (see Table 2) with basically no impact
on the population of hairpin structures. In pure water, the effect
of the glucose unit is practically undetectable with all analyzed
conformational properties of the glycosylated and unglycosy-
lated form yielding the same behavior within statistical error
(see Supporting Information Figures 15−17). These results
rule out the hypothesis that the sugar moiety can alter
significantly the conformational state of the peptide, lending
further support to the notion of a direct interaction between
Asn(Glc) and the autoantibodies in multiple sclerosis patients’
sera, as recently speculated.6,9

■ CONCLUSIONS
In this work we performed a computational study of a small
glycosylated heptapeptide derived from CSF114(Glc) and
engineered to favor β-turn structure, achieving an increase by 1
order of magnitude of the affinity for MS autoantibodies.9

According to NMR measurements,6,9 CSF114(Glc) and its
derivatives adopt in water a random coil conformation that can
be turned into the bioactive β-hairpin structure when a 50% in
volume water/HFA mixture is used as solvent. The dominance
of a random coil reported in water solvent, however, may be
simply due to the averaging of the signal over all fast-
interchanging conformations populated during the NMR time
scale. In order to test this issue we performed Hamiltonian

Figure 7. Time scales as a function of lag time for the Markov state
model of the glycosylated peptide in water (top) and the water/HFA
mixture (bottom).
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REMD simulations of the glycosylated and unglycosylated
heptapeptide Ac-ERPN(Glc)HTV-NH2 in water and in a 50%
in volume mixture of water and HFA. The unglycosylated
peptide was also simulated in the two solvents as a reference.
The structural compositions of the equilibrium ensembles in
the four systems obtained by means of the QT-clustering
analysis are summarized in Table 2.
Table 2 reveals that the fraction of β-hairpin conformations

(17%) is the same when the glycopeptide is simulated in HFA/
water and water. The greater hydrophobicity of the HFA/water
solvent determines a decrease in the fraction of extended
conformations (70% in water vs 42% in HFA/water) and the
appearance of a new structural motif with a curved peptide
chain and the glucose ring oriented toward the interior of the
loop. These structures, representing 41% of the equilibrium
ensemble of N4(Glc)Hepta in HFA/water may be compared to
a family of structures with a basically extended peptide chain
and a C-terminal loop that correspond to 13% of the
population of N4(Glc)Hepta in water. In both situations the
curvature is induced by a network of hydrogen bonds that
Asn4-Glc establishes with the C-terminal residues, especially
Thr6 and Val7.
The failure of NMR measurements to detect the hairpin

structures in water may be due to the intrinsic limitations of
this technique. In fact, NMR measures space couplings of
nuclear spins in NOE experiments, and the slow relaxation in
NMR spectroscopy sets a lower limit for spin interaction time
scale. If the molecular conformation changes faster than the
time required for two spins to interact, the signal is averaged
over all conformations populated during the NMR time scale.
Thus, the conformation of small, flexible peptides may not be
revealed by NMR. This hypothesis was confirmed through the
use of a Markov state model. This technique showed that in
water the whole equilibrium population can be considered as a
single metastable state, suggesting that all conformations can
rapidly interconvert between each other. By contrast, in the
water/HFA mixture the conformational space is partitioned in
two metastable states, one of which contains about 50% of all
hairpin-like conformations. The existence of high energy
barriers between the two macrostates (testified by the low
interstate transition rates) determines longer residence times of
the peptide in the hairpin conformation that make it detectable
by NMR. This effect is presumably also enhanced by the
increase in viscosity induced by HFA and testified by the longer
convergence times in the REM simulations.
The abundance of hairpin-like conformations in the aqueous

environment suggests that peptide Ac-ERPN(Glc)HTV-NH2
could be used not just as a probe for MS biomarkers in a
diagnostic assay but also as a drug (possibly in dendrimeric
form37) for treatment of the disease. Our study also suggests
the opportunity to further optimize the peptide sequence so as
to increase the fraction of hairpin-like conformations that
turned out to be below 20% in both solvents.
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