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This paper summarizes, simplifies, and extends some recent developments in the theory of phonon damping
in anharmonic crystals. We propose an approach in which the damping is described in terms of two ingredi-
ents: (1) a computed or estimated one-phonon density of states,(@ndverage anharmonic couplings
between the phonons, fitted to the experimental temperature dependence of the phonon damping. Solid nitro-
gen is chosen as a test case and the coupling coefficients obtained from the fit are correlated to the three-, four-,
and five-phonon couplings computed from a potential md&0163-18207)08421-X]

. INTRODUCTION Recent works'? have demonstrated that very high order
contributions to the series for the phonon damping may be
The damping of vibrational excitations in pure crystals iscomputed starting from the crystal potential and that efficient
due to the anharmonicity of the interaction potential. Thea priori calculations of the dampings are feasible. These cal-
lattice vibrations of an ideal harmonic crystal may be de-culations are based on the separate computation of two in-
scribed in terms of noninteracting phonons. The anharmonigredients: (1) the number of available decays pathways,
perturbations lead to interactions in which the phonons exi.e., the many-phonon density of states, &adthe average
change energy and are thus directly responsible for theanharmonic couplings between phonons. The method, which
damping. The many-body treatmehtéof the phonon inter- is free of the ambiguities in the phenomenological approach,
actions indicate that the phonon dampings the sum of an is, however, dependent on the accuracy of the potential
infinite series of contributiongor “diagrams”), each corre- model and is computationally very involved.
sponding to a specific phonon scattering process and with a This paper proposes an intermediate strategy between the
characteristic temperature dependence. a priori computation and the phenomenological fit. In this
In principle all kinds of processes involving any number strategy the many-phonon density of states is computed start-
of phonons need to be considered. A physically importaning from an experimental or computed one-phonon density,
and readily interpretable subset of processes is that reprahile the coupling coefficients are fitted to the experimental
sented by the “double vertex” diagrams.These are temperature dependence of the phonon linewidth. The cou-
n-phonon scattering processes in which a source phonon @ling coefficients obtained from the fit are defined as aver-
annihilated anch—1 target phonons are created and/or an-ages of potential derivatives and therefore provide informa-
nihilated, with conservation of the total energy and momention on the crystal anharmonicity. If desired, a direct
tum. It is believed that in many cases, e.g., for weakly ancomparison can be made with the derivatives computed from
harmonic crystals and for isolated phonon modes, these potential model. The computational requirements of similar
simple processes are the most probable and give the dontiybrid approachés'?are very moderate, and actually com-
nant contribution to the dampirfg® pete with those of the purely phenomenological fit.
Experimentally the damping is investigated either in the Our approach depends on an approximate, but highly ef-
time domain by directly measuring the lifetinie ! of the  ficient, algorithm for computing the damping. Successive
phonon excitations, or in the frequency domain by measuringerms in the perturbation series for the damping describe
the phonon linewidth B. The interpretation of the experi- scattering processes involving an increasing nunbesf
ments in terms of decay processes is generally based on tigonons. The main problem in summing the series for the
temperature dependence of the linewidth. In this approach damping is the explosive growth of the computation time as
small set of decay pathways is used to fit the experimentah increases. This growth is due t@) the number of pro-
temperature dependent&he main limitation of this phe- cesses, i.e., “diagrams,” to be taken into accou;all the
nomenological method is the arbitrariness in the choice ofombinations of phonon creation and/or annihilation events
the decay pathway. In fact all combinations of phonons withfor each diagram; an¢B) the sum on all branches and wave
the correct total energy contribute to the damping and thergectors which must be performed for each phonon involved.
is usually no compelling reason for choosing any particuladf n phonons are involved and the sums are extended to
set of phonon energies. Furthermore, the method does nbtanches and wave vectors, then the computation time due to
allow the decay efficiencyi.e., the anharmonic couplings (1), (2), and (3) grows approximately as!, 2" and N",
coefficients to be evaluated separately from the number ofrespectively, so that the total time grows @"N". This
available decay pathways. “combinatorial explosion” is so fast that in practice only the
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lowest order contribution to the damping can be computedited the coupling coefficients directly from their definition as
for realistic models without resorting to drastic averages of potential derivatives. No adjustment to the ob-
approximationg:6-8 served dampings was involved in the calculations, which
The theme of this work and of Refs. 5, 10, and 13 is themay therefore be regarded asapriori determination of the
need to eliminate all combinatorial factors from the compu-coefficients. In this work we treat the coefficients as adjust-
tation time. The growth in the number of diagrams is evaded@Ple parameters, to be fitted to the experimental temperature
altogether by considering only the “double vertex” dia- dependence of the dampings. Because of the availabiligy of
grams and ignoring all other processe®nly a single dia-  Priori _coefﬁment?, and of the abundance and quality of the
gram is thus considered for each This is essentially an €Xperimental data on the decay proces$e¥we have cho-
uncontrolled approximation, made to allow the calculation toS€n crystalline bl as an ideal benchmark for the computa-
proceed, and justifiech posteriori by the success of the tional strategy. . . .
method® Possible reasons for this success are that the ig- The paper is organized as follows. Section Il describes the
nored diagrams can be both positive and negative, so th&onstruction of the algorithm for the-phonon densities and
considerable cancellation may océund that, by containing @l the approximations involved. This section, which is rather
several frequency denominators, these diagrams are small farmal, may be skipped by a reader only interested in the
many circumstancesThe double vertex diagrams are al- algorithm itself. A completely self-contained description of
ways positive and contain only a single resonance denomfhe algorithm is given in Sec. lll, where a detailed discussion
nator. These are the diagrams which are usually considered the fitting procedure is also presented. The method is ap-
in the phenomenological approach, with the additional conPlied to the phonons of the\rystal in Sec. IV. The results
straint of fixed phonon energies; allowing all combinationsare presented in Sec. V and discussed in Sec. V.
of energies compatible with the conservation requirements

represents at least an improvement with respect to the phe- Il. THEORY
nomenological approach. N
The complications due to all the" Zombinations ofn A. Many-phonon densities of states

creation and annihilation operators are effectively eliminated The developments described in this paper are made pos-
by a reinterpretation of the meaning of the phononsiple by a recursive algorithm for computing many-phonon
operators:'® The annihilation of a phonon with energyis  gensities with a “factorized” weight® The n-phonon den-
described as the creation of an “antiphonon” with negativesity of statesG"(w,k) is defined as the number of states
energy —w. In practice this means that all the sums ongyailable for the decay of an elementary excitation with fre-
phonons are extended to both positiphonon and negative quency o and wave vectork into a set ofn phonons

(antiphonon energies. All combinations of phonon creation 1 5 'y with conservation of energy and momentum:
and annihilation processes are thus automatically taken into

account. With this method, which involves no approxima-
tion, only a single term, rather thait,2needs to be taken into  G"(w,k)= 2 J(wy) gy o— (w4 + )]
account for each. Obviously, the total number of processes kikn
does not change. _

This single term has the form of a weighted many-phonon X ALk = (kyt ek, @D
density of states generalized to allow for both positive an
negative phonon energidsThe direct computation of the

n-phonon density by summing ovér phonon modes would Dirac delta, and the weight§{ w;) are functions ofw; (e.g.,

require a time prop.ortio.nal tbl’f. We ﬁnds'.ls that, within a Bose occupation numberdn &k) we implicitly allow for
reas_onable gpprommatlon which essentl'ally cor_responds e periodicity of the reciprocal lattic&.In situations where
the introduction of an average anharmonic coupling, each he momentum is not conserved, as in incoherent neutron

these dens't'.es can pe recursively computed from the preVgcattering experiments, the appropriate density is the reduced
ous density in a timéndependenbdbf n. Therefore the total density of states

time for computing the damping due to all double vertex
processes involving up to phonons idinear in n.
By avoiding all combinational bottlenecks, this spectacu- Ny — _
lar improvement in the algorithmic efficiency makes the cal- G(w) klgkn 9(wy) gl oo =@yt e+ wn) .
culation of high order contributions to the phonon damping (2.2
possible® The original recursive algorithm3although quite
efficient, still had a slow step, namely the sum on phonorfFor molecular crystal$; the n-phonon densitie§"(w,k)
branches and wave vectors that was required at each step lafive been found to become essentially independekt as
the recursion. By transforming the recursion in a very fasn increases. ThereforeG"(w) may be used as a
repeated convolution with the one-phonon density of statek-independent approximation 16" (w,k) for high n. For
and then by neglecting the dependence ofrthghonon den- CO, (Ref. 13 and N, (Ref. 5 the approximation appears
sities on the wave vector, we have now found a way toalready usable for the two-phonon dengay.
eliminate even this remaining slow step. Due to the presence of nested sums, the time required to
Besides tha-phonon densities, also the anharmonic cou-compute the n-phonon densitiesG"(w,k) and G"(w)
pling coefficients are required for the computation of thethrough Egs.(2.1) and (2.2) grows exponentially withn,
damping. In a previous investigation on solig,Nwe evalu-  quickly exceeding any reasonable limit. Fortunately, it is

q/vhere a sum on all phonon branches is implicit in the sums
on the wave vectorg;, o; stands forw(k;), 6(x) is the
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possible to comput&"(w) in time linear inn by noticing®  recursive convolution of Eq2.5) is used, the effort required
that Eq.(2.2) implies a recurrence relation betwe&l and  at each step is independent ifand depends only on the

G L resolution with whichG"(w) is desired.

The recursive convolution foiG"(w,k) is an easily

d lizati f E¢2.5):

Gn(w):kzn g(w“)kl.%nfl 9(w) - glon_ 1) proved generalization of E¢2.5)

X (w—wp) — (w14 +won_1)] G”(w,k):f dQ dK G" Y w—-Q,k—K)GYQ,K).
(2.6
- n—1¢,, _

_kzn 9(wn)G™ (@=wn). 23 We wish to stress that Eg2.3), (2.4), (2.5), and(2.6) do

_ not involve any approximation.
Here we have changed the order of the sums and recognized

that the coefficient of(w,,) is actuallyG" (o — w,). With

the same method one may easily obtain the analogous recur-

rence relation folG"(w,k): The simplest double-vertex processes are the “down” en-

ergy conversion processes. In a “dowm*phonon scatter-

ing process a phonon 1 with energy and wave vectok; is

annihilated anch— 1 phonons 2,3..,n are created. The con-

tribution to the dampind’; of phonon 1 due to “down”
Equations(2.3) and (2.4) offer an efficient way of com- n-phonon processesie3) is proportional &%

puting all G" up to any desired order. In practice the one-

B. Damping from double-vertex diagrams

Gn(w,k):kE 9(w)G" Yw—w, k-k,). (2.9

phonon densityG! is computed first by direct sum through v 2 (Mot 1) (Nat 1) (Nat1

Eq. (2.2 or (2.1), then the densitie$?,G2,G*, are com- k2k§~kn| 123l TNz T D) (Ng+1)---(ny +1)
puted one after the other through the recurrence relation, Eq.

(2.3 or (2.4). Each additional density in the sequence re- —NaNg..Np ]l o= (wot wgt -+ + wp) ]

quires a constant increment of computer time, so that the X [ ky— (Kp+Kgt -+ +kp)], 2.7

total time required up to order is linear inn. Please note

that this result only holds with a factorized weight function whereV, , ., is thenth order anharmonic coupling coeffi-

g(w1)---g(w,). We are convinced that the computing time cient andn; =[ expw; /kgT)—1] 1is the average phonon oc-

for densities with nonfactorizable weights is intrinsically ex- cupation number. As shown in the derivation of £R.7),°

ponential inn. The problem is not solvable in a time which the factorsn;+1 andn; originate as thermal averages of

grows as a power af (i.e., it is NP hard). ordered products of operatobs and biT, which annihilate
Besides their usefulness in the practical computation ofnd create phonoris

G", Egs.(2.3) and(2.4) also indicate that all the information

in G" is already contained in the one-phonon den€ity In ni+1=(b;b]),

fact, by inserting ad integral closure, i.e.G" }(w— w,)

=[dQG" Y w—0)5(Q—w,), in the right-hand side of n=(b/b;). (2.9
Eq. (2.3) and then exchanging integral and sum, we can rep-

resentG" as the convolution 06"~ 1 and G1: As mentioned in the Introduction, that of E@.7) is just

one of many terms due to all possible combinations of pho-
. he1 non creations and annihilations. The explicit addition of all
G (“’)_kz 9(@n)G" (w—wn) missing terms would lead to expressions whose complexity
" increases wittn. We avoid this problem by adopting the
o phonon-antiphonon picture’® Both positive (phonon and
:kz g(wn)f dQ " (0= Q) 5(Q—wy) negative (antiphonon signs of the phonon energy are al-
" lowed and all sums on phonon branches are extended to both
_ energy signs. For a negative energy(i.e., an antiphonon
:f dQ G" 1(w_9)k2 9(wn) 6(Q— wp) the sign of the wave vectdy; is also inverted and the mean-
" ing of the phonon creation and annihilation operatbfsand
b;, are exchanged. Thus the thermal averagesl andn;
are also exchanged in E.7).
Equation(2.7) has the form of a weighted many-phonon
This simple convolution equation allows one to computedensity of states, involving— 1 phonons. This density may
by recurrence the reduced densit®@Y ) starting from the  pe calculated efficiently using the recurrence relatiggs.
one-phonon densitG'(w), which may be measured or es- (2.3) or (2.4)] if the weight may be cast in a factorized form.
timated easily. The practical importance of E2.5) is con-  Each of the two thermal factors in square brackets in Eq.
siderable. In fact each recursion step using @) implies  (2.7) is already in the required form. For the coupling coef-
a sampling over a numbé¢ of wave vectors in the Brillouin  ficients we are forced to adopt a Peierls-type decoupling
zone. To improve the accuracy of the calculation one needgpproximatior?? in which |V, , |2 is factorized:
to increaseN and therefore to increase the computational
effort required byeachrecursion step. On the contrary, if the V1o pl2xf(Joi)f(|wo]): - T(|wp)). (2.9

=f dQ G" Y w—-Q)GYQ). (2.9
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The functionf (w) should be chosen to give the correct linearmonic coupling coefficients, an(8) the dependence of the
behavior of V4 , . ,|? as one of the phonon frequencies goesdensity of states on the wave vector is neglected.
to zero>!®# In the previous paperwe chosef(w)= w. We assume that the experimental frequeneigsind the
Here we prefef (w) =1—exp(—w/wp), Wherewp, is the De-  linewidth 2I';(T) as a function of the temperature are
bye frequency?® For small w, f(w) goes linearly to 0 as known for a set of phonon branchesA measured or esti-
desired. Fow> wp, f(w) tends to 1, and thus we avoid the mated unweighted one-phonon density of state®!(w)
spurious dependence of the coupling coefficients on the pho=2;6(w — wy;), is also available, in the form of a numeri-
non frequency which was bothering us in Ref. 5. cal histogram in a frequency ranges@ < w,, With some
Using the approximate factorization of E@2.9), the suitable channel width. For definiteness, we normalize
dampingI'{"” due ton-phonon double vertex processes, in-D'(w) to a total area equal to the number of phonon
cluding all combinations of creation and annihilation eventsbranches. With this choice, the numerical value of the den-
become$ sity, and thus those of the anharmonic coupling coefficients,
does not change if the analysis is restricted to a subset of all
- phonon branches by neglecting the internal modes or other
e 2 [9(02)9(w) - g(@n) ~9(=@2)9(~@3)'g  portions ofDX(w).
a2 Starting fromD(w), we evaluate for the range wmax
X(—wy)]dw1—(wrt w3+ +w,)] <w<wpa and for a given temperatufk the auxiliary tem-

perature dependent density
X O ky—(kyo+Kkg+---+kp)], (2.10
DYl f(|o))[n(|@

where all sums extend to both positive and negative energies G1(,T)= N)+1] for =0

and we have defined Do) f(|w)n(le]T) for w=<0,
(3.2
g(w)= f(lo)n(Jw], T)+1] for ©=0 2.11) wheren(w,T) =[expfiw/ksT)—1] ! is the average phonon
f(Jo))n(lw],T) for w<0. occupation number. Fow>0 or <0, this density de-

scribes the probability of emissidne., creatiom or absorp-

By allowing sums on both signs of the energy, E410 tion (i.e., annihilation of a target phonon with frequendy|.
describes any combination of phonon creation and annihilathe thermal weighh+ 1 accounts for both spontaneous and
tion processes in which a phonon 1 decays with conservatiogtimulated emission, while is the weight appropriate to
of its energyw; and momentunk,. In other words, all absorption. The factorf(w)=1—exp(—w/wp) approxi-
combinations of phonons and “antiphonons” are consideredmately describes the way in which the anharmonic coupling

The damping (" is now expressed as the combination of coefficients go to zero while the phonon frequency goes to
two densities with factorized weights, each in the form re-zero. The Debye frequenayp is simply identified with the
quired by Eq(2.1), and may thus be computed efficiently by largest frequency of the three acoustic branches, and may be
using Eqs.(2.4) or (2.6). As the sums in Eq(2.10 are ex- found from the densityD!(w) as that wp for which
tended to both energy signs and the Diraé’ss an even JePdw D(w)=3.
function, it turns out that these two densities represent actu-" o G?, we compute a sequence of many-phonon den-
ally a unique function evaluated at two different placesigjties G2 G3 .. G" up to the desired ordem, using the
G"(w1,k;) andG"(— wy,—k,). This is convenient because acyrsive convolution of Eq2.5) '
the recursive algorithm automatically yields the density for
all values ofw andk.

For the purposes of this paper, we prefer to neglect the G“(w,T):J dQ G" Yw—0,T)GY(Q,T). (3.2
dependence of the densities on the wave vector, replacing
them with reduced densitié"(w) [Eq.(2.2)]. Thisisavery gachgn
good approximatiofi;*® which enables us to use the simple ¢ integral can be restricted to the rangem,,, <
one-dimensional recursive convolution of £g.5). We have < . The structure of Eq€3.1) and(3.2) ensures that all

now discussed all the components of the algorithm for thq3n,s maintain the same physical dimensionsDxs (the re-
double vertex damping, which is described in the next Sec(’:iprocal of a frequendy The convolution inG", being ex-

tion. tended to both signs, automatically accounts for all possible
combinations of creations and/or annihilations roftarget

Ill. METHODS phonons, each one with the proper energy sign and thermal
weight. In practicew is the total energy which the target
phonons gain frontfor «>0) or lose to w<0) the source

As discussed in the Introduction, we advocate a strategphonon. Thus

in which the average anharmonic couplings are fitted to the
experimental temperature dependence of the damping. The P (0, T)=C"(»,T)—G"(—w,T) (3.3
algorithm for computing the damping is based on a represen-
tation of the many-phonon density of states as a recursivdescribes the nefgain-los$ thermally averaged-phonon
convolution and involves the following approxima- population which is available for the decay of a source pho-
tions: (1) only the double vertex diagrams are considerednon of frequencyw in a scattering process involving+ 1
(2) a Peierls type approximation is adopted for the anharphonons.

iS nonzero in the range N ma= o<Nwmax, While

A. Efficient calculation of the many-phonon density of states
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the branch index, may be obtained by fitting Ed3.4) to
the experimentall’;(T) or computed from a potential
model®

The Cﬁ coefficient for a given phonon mode 1 is implic-
itly defined by comparison of Eq3.4) with Eq. (2.7). The
corresponding explicit definiticnin terms of then-phonon
couplingsV;,3.. n and of the closely related derivatives

®, , 3., Of the total potential with respect to tlrenormal
coordinates associated kg ,k, ,k3,... k, (Refs. 9, 19, and
24) is
Cl=2m(n—1)!n? Z |v123 ol?
2Kz
X[f(wz)f(ws)-“f(wn)]_l, (3.9
v 1 (A A A h 1/2(1)
1230711 | 26, 20, 205 2wy 1,23...n
(3.6

B. Least squares fit: choice of the model

FIG. 1. Calculation of the three-phonon density of states for the The fit to the experimental dampings is a typical optimi-

lattice modes ofa-N, at T=35K. From top to bottom: one-
phonon density DY (w)=3,;8(w—w,;), auxiliary densities
GY(w,T) [Eq. (3.1)], GX(w,T) andG3(w,T) [Eq. (3.2], and ther-

mally weighted density®(w,T) [Eq. (3.3)]. D!, G", and p" are

defined for w in the ranges[0,wmaxl, [ —N@max.N®maxl, and

[0Nwmad, respectively, where,,,»~70 cmi ! is the largest lattice
frequency.

To illustrate the algorithm fop" just described, we dis-

zation problem. The dampinf, has been measured at a
numberN of temperature§, and a model functiod (T),
which depends of a set of undetermined parameZgrshas
been chosen. A combination of parameters which minimizes
the distance of the model from the experiment is desired. In
situations like the present one, where the experimental errors
do not appear to fluctuate wildly and “outliers” are not ex-
pected, an appropriate measure of distance is Ithe
metric?>?% that is the usua), deviation between measured

play in Fig. 1 the various steps in the calculation of theand model dampings:

three-order density of states for the lattice phonons paN

T=235 K. The one-phonon density is first calculated directly

from its definition D}(w)=3;8(w— w;). Details of this
calculation appear in Sec.
GY(w,T) is then obtained from Eq3.1). Then-phonon den-

IV. The weighted density

(3.7

The “weight” o, is the standard deviation of tleth obser-

sitiesG?(w,T) andG3(w, T) are then computed in sequence vation. Wheno is not available, the usual procedtié®is

using the recursive relatiof8.2) and finally inserted in Eq.
(3.3 to yield the net density"(w,T).

To evaluate the consequences of replacdifw, k) with
G"(w), we have compute@"(w,k) via Egs.(2.1) and(2.4).
The difference betweeB"(w,k) and G"(w) is found to be

to first assign an arbitrary constanto all observations, then
fit the model parameters by minimizing?, and finally re-
computeo?=3JT'.—TI'(T.)]%N. This recipe yields an es-
timate o for the standard deviation of the measurements,
which will be eventually propagated to an erfae., a con-

barely noticeable already for=2. Therefore the approxima- fidence interval for the fit parameters.
tion of neglecting the dependence of the densities on the Because our model equation f6Y(T,), Eq. (3.4), con-

phonon wave vector is fully justified.

To obtain the total linewidth B; for a phonon at fre-
quencyw; , we multiply the netn-phonon density" by the
average squared anharmonic coupling coefficiehnt, and
sum onn:

2T(T)=Ch+ ChpX(w; , T)+ Chp3(w; , T)+ -+

+CLL o p" (o T+, (3.4

tains, in principle, an infinite number of terms, it is necessary
to select an appropriate finite combination of fitting param-
eters. One has to choo$#) whether to include or not the
temperature independent broadentyg, and(2) the highest
ordern included in the series. Since low order multiphonon
processes are more probable than high order processes, it
does not make sense to include a term without including all
previous terms in the series.

To provide an example of the problems involved in such a
selection, we have chosen two of the phonons of solid N
namely theE, symmetry lattice mode near 38 cthand the

where a phenomenological parame@;‘; has been added to A, stretchmg mode near 2328 ¢ty and separately mini-
represent any residual temperature independent linewidth nmzed they? deviation between the experimental and model

due to many-phonon scattering, such as an instrumental @lamping with several different combinatiords,j,..

impurity broadening. The coefficien€},, which depend on

.} of

nonzero parameterC;,C;,...}. Figure 2 displays a com-
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in which all of its energy is redistributed by creating a num-
ber of phonons of smaller energy, and in various types of
“up” processes in which the decay is assisted by the addi-
tional energy provided by the annihilation of one or more
preexisting phonons. A0 K the thermal phonons population
is zero and “up” processes are not allowed. Therefore any
observed linewidth at very low temperatures must be due to
“down” decay and/or to the temperature independent broad-
eningC,.

For the stretching phonons of,Ndue to the structure of
the one phonon density of states and to the energy conserva-
tion constraints, there are no combinations of phonons avail-
able for “down” decay. In such cases, which occur fre-
quently for internal phonons, one has to allow for a constant
term to reproduce the observed linewidth at O K. FortiNs
residual linewidth is £,~0.005 cm? (Fig. 2), a value
which is comparable to the statistical error evidenced by the
fluctuations of the measurements.

For the lattice phonons the energy conservation con-
straints for “down” decay can always be satisfied. Since
both “down "decays and temperature independent broaden-
ing Cy contribute to the damping at low temperature, and
since for N the latter term appears comparable to the mea-

FIG. 2. Choice of the theoretical model for the temperature de-surement errors, an unambiguous Separation ®DtK line-
pendence of the linewidthI2of the Eg lattice mode at 38 cm  idth into the two contributions is impossible. In such a

(upper panel and theA, stretching mode at 2328 cth (lower g ation it is preferable to negle@, with respect to the
pane). Circles: experiment$Refs. 14—1Y. lines: fits with dif- much larger broadening due to “down” decay
ferent setdi,j,...} of nonzero coefficients, as indicated in the fig- To close this discussion. we summarize-cmrpriori

ure. recipe for including or not th€, term: (1) always include

parison between the experimental and fitted dampings fofo for those internal phonons for which the structure of the
some of these combinations. For the phonon at 38'cwe  density of states does not allow “down” decaf?) unless
also list in Table | the optimal values of the parameters. there is evidence of structural, isotopical, or chemical disor-

For the lattice phonoriupper panel of Fig. 2 then=3 der, do not includeC, for all the lattice phonons and for
decay processes alomeet{:-;}) underestimate the observed those internal phOﬂOI’IS for which “down” decay is allowed.
temperature dependence of the damping, thus indicating that After deciding on the inclusion of th€, term, one has to
higher order processes are also required_ M set per- choose the hlghest Ordéln included in the Series, a choice
forms significantly better, as expected, while §845 set ~Wwhich can only be done posteriori Clearly this choice
provides only a very small additional improvement. Sincecannot be based solely on the agreement between measure-
the{o3} and{034} sets require negative Coefficiem&bie D, ment and fit. In fact, thOUgh the eXperimental data could be
they are considered as physically meaningless and are nigproduced exactly by using a number of tertis., param-
shown in Fig. 2. The constant ter@, must be excluded eters equal to the number of measurements, such a fit would
from the fit. contain no useful information beyond that already contained

For the Stretching phonoﬁower panei of F|g 2 there in the data. In some sense, we aim to maximize the addi-
are non=3 decay processes allowed by the energy consetional information provided by the fit.
vation constrainti.e., p2(w,T)=0 for w= 2328 cnT1]. Be- A reasona_ble measure of th_e amount of infor_mgtion ina
cause then=4 processes alonéset {4}) overestimate the fit is the Akaike Information CriteriofAIC),?"8 originally
observed temperature dependence, it is necessary to inclufgfived in a maximum likelihood context, and defined by
Cy, the only possible lower order term. TK@4} set repro-
duces the observations quite well, and, again,{t5} set AlC=In(x?)+2K, (3.9
yields a negligible improvement.

If we were to choose a preferred set of parameters for thevhere K is the number of adjustable parameters in the
lattice mode on an intuitive basis, we would discard the setsnodel. The model with the minimum AIC is regarded as the
{03} and {034 as meaningless, and then adopt the rule obest representation of the experimental data. When two dif-
thumb “keep adding terms until the improvement in the fit ferent models have almost equgf deviations, the model
becomes small enough” to select t{8} set as the best and with the lower AIC is that with the smaller number of pa-
most informativeset. For the same reason we would selectrameters. By minimizing the? deviation for several alter-
the {04} set for stretching phonon. We aim to formalize andnative models and then by choosing the model with the mini-
to automate these intuitive notions. mum AIC, one effectively combines a best fit criterion with

The decision whether to include or not a temperature ina “principle of parsimony.”
dependent dampin@, is, in part, a matter of preference. We  We use an AIC analysis to choose the optimal ordéor
recall that a source phonon may decay in “down” processedruncating the series for the phonon damping, Eg}4).
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TABLE I. Minimum AIC analysis for theE; mode near functions exactly equal to zero, and add to the fit arbitrary
38 cm . For each sefi,j,...} the table reports the optimal coeffi- multiples of such degenerate combinations without any ef-
cients C;,C;,..., the AIC and thecorrelation coefficientR*>  fect on they2. Even this singular situation does not imply
=3 [(Te) —T1/2T—T]? Here(T) is given by Eq.(3.4 that the fit is totally meaningless, but merely that the coeffi-
andT is the average experimental dampir@, is in cm™; the  cient in front of a degenerate combination is undetermined.

other coefficients are in cif. The coefficients of other combinations may well be deter-
mined with high precision.
Co Cs Cy Cs The recommended method for singular, or close to singu-
Set AIC R cm cm? cm?  cm? lar, x? problems is singular value decomposititB\VD). As
3 5613 0876 19.234 the SVD algorithm is_ de_scribed in many numerica} ana_lysis
34 5421 0986 2845 0.339 h'<’:1ndbook§,5'26 we will simply summarize the main prin-
(345 7261 0988 7678 0082 0034 ciples of the method. Because the theoretical dampings

I'(T) of Eq. (3.4 are linear in the fit parametef<;}, the

x? deviation of Eq.(3.7) is a second order polynomial in
{C;}. The surface\ y?=const is therefore a quadratic form,
which describes a multidimensional ellipsoid centered on

Table | presents the results of such an analysis for the ten{Ci" }- The SVD procedure is mathematically analogous to
perature dependence of the dampIi@) of the phonon at the diagonalization of a dynamical matrix which gives the
38 cm ! of N,. We have separately minimized thé by  €igenvectors and eigenfrequencies of a set of coupled har-
including one, two, three, etc. consecutive terms of the serieg&onic oscillators; SVD yields an orthonormal set of vectors
for the damping. For each sét,j,...} the table lists the Vj describing the principal axes of the ellipsoid in terms of
optimal coefficient<; ,C; ,..., together with the correspond- the original parameters, and a corresponding set of “singular
ing AIC and squared correlation coefficieRe. values” w; whose reciprocals are the axis lengths. The pro-
The table clarifies the mechanism through which the Alccedure returns in effect a rotation from the old parameters
analysis weighs accuracy and complexity of the fit function{Ci—Ci""} to a new set of parametef#,} which diagonal-

{03} 7.063 0.928 —1.456 24.336
{034 7.330 0.987 0.340 —0.350 0.380

to identify the best model. In the sequerd8k {34}, {345},...,  ize theAx? quadratic form:
the AIC first decreases, because {Bd} set is much better T -
than the{3} set(R? much closer to X, and then increases, Ax“=WIAT+ WA+ - -+ WRAL (3.9

because the very small gain in the fit does not compensate ) Lo
for the cost of additional adjustable parameters. The AIC!N€ absence of cross terms in £8.9) indicates that the new

analysis captures very well our intuitive reasoning and corParametersy; are mutually independertstatistically uncor-
rectly identifies the{34} set as themost informativemodel. ~ 'elated. Those combination¥/; of the original parameters
Table | also indicates that, as usually expected, the couplinith the largerw; have the larger effect on the fit and are

coefficients decrease with increasing order erefore the more precisely determined combinations.
C. Least squares fit: error analysis IV. CALCULATIONS
The set of parametef€™"} which has the minimum AIC We present here the details of the test calculation for

and yields the minimuny? distance between measurementsa-N,. Solid nitrogen in itsa phase crystallizes as a cubic
and model 2., is considered as the “best” set. This set of lattice (space groua3, T¢) and is stable in the temperature
parameters is by no means the “true” set, because a repetiange 0—36 K° The factor group analysis of the=0 lattice
tion of the measurements would yield a differentf@f} of = modes predicts five Raman active modegsth symmetry
parameters. The probability distribution f0€;}, which de-  Ay+E,+3Ty), two infrared active modes {2), two opti-
termines the confidence region for the parameters, obviouslyally inactive modes 4,+E,), and one acoustic mode
depends on the probability distribution for the measure{T,). The experimental temperature dependence of the
ments. If the measurement errors follow a norit@@ussiap  damping, I'(T), is available for most of the active
distribution, then it can be proved that the quantty?  modes* ¥ For each of these modésve have estimated the
=x?({Ci}) — x2,, follows a chi-square distributiof??® For ~ average anharmonic coupling coefficiefits and their con-
each parameteg; , the regions withA <1, 4, or 9 enclose fidence regions by fitting the experimenialT).
the 1o, 20, or 3o interval of confidencdthe interval where The one-phonon densityD(w)=3;8(w— wy;), has
C; falls with probability 68.3%, 95.4%, and 99.73%The  been calculated by sampling the full Brillouin zoriBZ)
recipe mentioned in Sec. Il B is to be followed to evaluate with about 10 000 wave vectors. The phonon frequencies
when the experimentat,’'s are not available. have been computed at the extrapalatd K crystal

In the least squares fit for the mode at 38 ¢rwe have structuré® with the intermolecular potential model of Mur-
found that the optimal parameters are not well determinedhy et al,®! to which we have added a purely harmonic in-
and, as shown by Table I, fluctuate wildly when the numbetramolecular potential. The Debye frequency, estimated by
of terms is varied. This pathology is due to the fact that thentegratingD(w), is wp=33.3 cmi'L. The recursive algo-
“basis functions” of the problem, i.e., the weighted rithm described in Sec. Ill A has then been used to compute
n-phonon densities of statgS(w,T) of Eq.(3.4), are highly  the thermally weightedn-phonon densities[Eq. (3.3)]
correlated to one another. In the limiting case of a perfecp"(w,T) up ton=>5, for all temperature3 at whichT" has
correlation, one can build linear combinations of the basideen measured. These densities, evaluated at the mode fre-
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term Cg has been included only for the stretching modes. To
provide a worked example of the connection between poten-
tial model andC,, coefficients, we have also comput€q
through Egs(3.5 and(3.6). The potential derivatives have
been computed numerically, as described in Ref. 5.

V. RESULTS

The results of the fits are shown in Fig. 3. We have found
that the {34} set has the best AIC for all lattice modes,
whereas thg04} set has the best AIC for the two stretching
phonons. As shown in Fig. 3, the dominant contribution to
the width at higher temperatures is given in all cases by the
diagrams of vertex ordan=4. This conclusion is in agree-
ment with thea priori calculations. The anharmonic cou-
pling coefficientsC,, obtained from the fits are listed in Table
Il together with thea priori C,, calculated from the potential.
The calculated coefficients of Table Il are different from
those of Ref. 5, due to a different choice for the weight
function, to changes of units, and to a programming error for
the stretching modes.

Both fitted and calculate@,, decrease quite fast with in-
creasing ordemn. In this respect thea priori computation
confirms the results of the AIC analysis, and indicates that
for a-N, the n-phonon processes beyoneg-4 are not very

FIG. 3. Linewidth ' (cm™) vs temperatureT (K) for the  important with respect to three- and four-phonon processes.
phonons ofa-nitrogen. Phonon modes are labeled by their symme- A more meaningful comparison betwearpriori compu-
try species and calculated harmonic frequency intnCircles  tation and fit depends on the confidence region of the fit. The
denote experiment®Refs. 14—18 Linestyles distinguish fit results: SVD confidence ellipsoids for the fit coefficients are shown
total linewidth (solid lineg; individual contributions due t&C,  in Fig. 4 together with the priori coefficients. Each ellip-
(dash-do), C; (dashes andC, (dots. soid A x?<9, whose principal axes have orientatign and

length 1iv; , encloses the@confidence region for the coef-
quencyw;, are to be inserted in the model equation for theficientsC5 andC, (or Cy andC,) for a single mode. For all
fit [Eq. (3.4)]. lattice modes, the ellipsoids are very elongated and have a

Minimum AIC fits have been performed for all phonon negative slope for the major axis, thus indicating a negative
modesi for which experimental’;(T)’s are available. All  correlation betweef€; andC,. Thus substantial variations
sets of consecutive nonzero coefficients,, C4, Cs, and  of C5, compensated by smaller variations ©f in the op-

Ce, have been tested. As previously discussed, the constapbsite direction, are allowed by the fit data. Previous

TABLE II. Anharmonic coupling coefficient€; obtained from the AIC fit to the experimental linewidths
and calculated as averages of potential derivatives according to(E§s.and (3.6). Phonon modes are
labeled by their symmetry species and calculated harmonic frequency.

Sym. Freq. Co Cs Cy Cs
cm™?! cm™?t cm™? cm™? cm™?

Eq 38  Fit 2.845 0.339

Calc. 2.158 0.202 2.91810° 2
Ty 45  Fit 2.749 0.055

Calc. 2.343 0.226 4.76210°3
T, 47  Fit 3.632 0.261

Calc. 3.387 0.219 3.60410° 3
T, 70  Fit 3.294 0.754

Calc. 2.647 0.115 2.55710° 2
A, 2328  Fit 0.666< 10" 2 0.129< 102

Calc. 0.075 2.20810°° 2.756x10°8
T, 2329  Fit 0.10x10* 0.167x 102

Calc. 0.101 6.608 10°° 3.132x10°8
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VI. DISCUSSION AND CONCLUSIONS

We have developed a very efficient method to calculate
the phonon damping in anharmonic crystals starting from the
one-phonon density of states and the average anharmonic
couplings between phonons. The one-phonon density is used
to obtain then-phonon thermally weighted densities which,
when multiplied by the coupling coefficients, yield the vari-
ous high order contributions to the phonon damping. For
a-N, we have obtained the coupling coefficie@s in two
different ways: by averaging potential derivatives, with the

Cy potential model of Murthyet al,*! and by fitting the experi-
0.002 me_ntal temperature dep_endence o_f th_e phonon damping. Cri-
teria for choosing an optimal combination of decay processes
and methods to estimate the confidence region of the coeffi-
0.001 cients have been presented in the context of the fit.
For the lattice modes ok-N, the calculated coefficients
C; andC, are of the same magnitude as those obtained from
0.000 the fit, although considerable deviations exist among the dif-
T

ferent modes. For the stretching modes, the calcul&tged
coefficients are much smaller than those from the fit. This

situation corresponds to that found in most past calculations
2,33-36

T T
0.00 0.01 0.02 C,

FIG. 4. Anharmonic coupling coefficien€, for the lattice and

the stretching mode@ipper and lower panel, respectivelZ; and for the damping; which were usually restricted to
C, are in cm2 units; Cy in cm L. Symbols: coefficients com- =3 processes. The=3 results for the lattice modes of,N

puted as averages of potential derivatives. Ellipsoidsr param-  (Refs. 33 and 3@indicate that different potential models

eter confidence region obtained from the SVD analysis. Harmoni®Vith comparable harmonic frequencies may give surprisingly
frequencies (le) label nearby e||ipsoids and, as indicated by the Iarge linewidth differences. Furthermore, it should be noted

arrows, corresponding calculated coefficients. that in calculations like the present 8rté3’ the a priori
average coupling, has been estimated by sampling over a

studie€2®2indicate that large ambiguities in the fit param- restricted class of coefficients. Therefo, is expected to

eters are a common occurrence. As shown by Fig. 4athe P& less accurate thabs, which is averaged over all coeffi-
priori C,, are not particularly well correlated to the fitted CI€NtS- This expectation is consistent with the results of the
C,, although they usually lie within or close to the: 8on- f!t. For the Igtuce modes, tha priori C3.I|e within the con-
fidence region of the fit. Please note that the regions corrdidence region of the fit, whereas this does not apply for

sponding to negative coefficients, though allowed by the fit,C4- i o
must be rejected on physical grounds. In the calculations for the=3 contribution to the decay

H ,35,38 _
The C, and C, coefficients for the stretching modes are ©f internal modejsz_ (for systems where=3 decays are
both well determined ¢~ 10%) and exhibit a rather weak allowed the experimental linewidth was also systematically
cross correlatior{the axes of the ellipsoids do not deviate underestimated. These findings indicate that detailed agree-

much from theC, and C, axes. For these modes the com- Ment between the fitted and comput€d can only be ob-
parison between fit and calculation is quite problematic,ta'”ed by fine tuning of the potential model. Intramolecular

sinceCs, is not experimentally accessible, due to the absenc@nharmonicity, totally neglected in the present calculations,
of two-phonon resonances around 2328-2329%cnand is probably to be blamed for most of the discrepancies found

C, has a purely phenomenological origin without a well de-fOr the stretching modes. . .
fined a priori equivalent. ForC,, the only coefficient for The methods discussed in this paper provide a systematic

which a comparison is possible, the results obtained from th&Ttegy for extracting information on the potential anharmo-

potential derivatives are substantially smaller than those obiCity from the experimental temperature dependence of the
tained from the fit. phonon linewidths and a rational way of comparing the ex-

Our results cannot be directly compared to the anhariractéd information with a potential model.
monic constants obtained from a phenomenological fit for
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