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ABSTRACT: Serial generalized ensemble simulations, such as simulated tempering, enhance phase space sampling through
non-Boltzmann weighting protocols. The most critical aspect of these methods with respect to the popular replica exchange
schemes is the difficulty in determining the weight factors which enter the criterion for accepting replica transitions between
different ensembles. Recently, a method, called BAR-SGE, was proposed for estimating optimal weight factors by resorting to a
self-consistent procedure applied during the simulation (J. Chem. Theory Comput. 2010, 6, 1935−1950). Calculations on model
systems have shown that BAR-SGE outperforms other approaches proposed for determining optimal weights in serial generalized
ensemble simulations. However, extensive tests on real systems and on convergence features with respect to the replica exchange
method are lacking. Here, we report on a thorough analysis of BAR-SGE by performing molecular dynamics simulations of a
solvated alanine dipeptide, a system often used as a benchmark to test new computational methodologies, and comparing results
to the replica exchange method. To this aim, we have supplemented the ORAC program, a FORTRAN suite for molecular
dynamics simulations (J. Comput. Chem. 2010, 31, 1106−1116), with several variants of the BAR-SGE technique. An illustration
of the specific BAR-SGE algorithms implemented in the ORAC program is also provided.

1. INTRODUCTION
Generalized ensemble methods1 are commonly used in computer
simulations of systems with a complex free energy landscape to
estimate thermodynamic averages through non-Boltzmann phase
space sampling. For example, in simulated tempering2,3 and tem-
perature Replica Exchange4−7 (RE), a random walk in temperature
space allows the system to overcome energy barriers much larger
than kBT and hence to explore important phase space regions that
are difficult to sample with conventional simulations. In both
methods, copies of the system (replicas) are allowed to move in a
generalized phase space, defined by the usual dynamical variables
(atomic coordinates and momenta), plus a discretized variable
(denoted as λ in the following) that represents different tem-
peratures. Standard equations of motion are employed to evolve
atomic positions and momenta, while a Monte Carlo-like algo-
rithm is used to perform temperature transitions of the replicas via
λ changes. More generally, as it occurs in Hamiltonian RE8,9 and
solute tempering,10−12 λ is a parameter entering the Hamiltonian
of the system, and transitions occur between ensembles with
different values of λ. In all generalized ensemble methods, the
configurations of all replicas can be exploited a posteriori to calcu-
late thermal averages, using reweighting techniques.13−15

The classification of Serial Generalized Ensemble (SGE) and
Parallel Generalized Ensemble (PGE) algorithms is sometimes
used to distinguish between schemes based on single-replica
transitions (like in simulated tempering) and those based on
swaps of replica pairs (like in RE), respectively.16 Comparisons
between SGE and PGE methods have been reported.17−19

The overall conclusions of these studies are that SGE methods
consistently give a higher rate of delivering the system between
ensembles with large and small λ values (low and high tem-
perature states in simulated tempering), as well as a higher rate

of transversing the potential energy space. Moreover, SGE
methods are well-suited to distributed computing environments
because they do not need the synchronization of all processes
that is instead required by standard PGE schemes (with the
exception of the asynchronous versions of RE20). On the other
side, in order to get uniform sampling of the ensembles in SGE
simulations, one has to apply weight factors equal to the free
energies of the λ ensembles. The knowledge of such free ener-
gies is not needed in PGE methods because replica exchanges
do not imply free energy variations. Determination of free ener-
gies of λ ensembles is the most critical aspect of SGE schemes.
In fact, as remarked in ref 17, the estimate of accurate weight
factors may be very difficult for complex systems. Inaccurate
estimates, though not affecting the basic principles of SGE methods,
do affect the sampling performances in terms of simulation time
needed to achieve convergence of structural properties.17

This issue has been the subject of many studies, especially
addressed to simulated tempering simulations.3,16,18,21−25

Recently, a self-consistent method to calculate optimal
weights in SGE simulations has been proposed.26 This method,
called BAR-SGE, gives asymptotically exact results and is based
on generalized expressions27,28 of the Bennett acceptance
ratio29 and free energy perturbation.30 It has been shown that its
accuracy is comparable to the multiple-histogram reweighting
approach,13,14 with a modest additional computing time with
respect to a conventional simulation. BAR-SGE was applied to a
simple model system,26 where it was shown to outperform other
computational strategies for determining optimal weights.16,25

However, the actual performances of BAR-SGE with respect to
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the popular RE have not yet been investigated. In this article, we
present the results on two BAR-SGE simulations (with one and
eight replicas) and one RE simulation (with eight replicas)
related to a physically sound system, i.e., an alanine dipeptide in
water solution. As we will see, this system is quite challenging
because a canonical simulation at room temperature is unable to
fully explore the free energy surface in terms of the Φ and Ψ
dihedral angles (Figure 1). For this reason, the alanine dipeptide

has been taken often as a benchmark to verify new computa-
tional methodologies for exploring free energy surfaces.9,31,32

The BAR-SGE technique has been implemented in the open-
source molecular dynamics simulation program ORAC.33,34 In
particular, we have supplemented the program with a module
that allows the user to perform (i) simulated tempering based
on Hamiltonian scaling,8 (ii) simulated solute tempering,12 and
(iii) an SGE variant of multiple-window umbrella sampling35,36 on
user-defined internal coordinates such as interatomic distances
and bending and dihedral angles. The ORAC program is dis-
tributed free of charge under the GNU general public license
(GPL) at http://www.chim.unifi.it/orac.
The outline of the article follows. In section 2, we define the

acronyms used throughout the article along with the definitions
of few widely employed terms/abbreviations. In section 3, we
introduce the SGE theory. The implementation of several SGE
variants in the ORAC program is illustrated in section 4, while
the BAR-SGE algorithm is described in section 5. Details on the
simulations and on the system are presented in section 6. In
section 7, we report and discuss the results of the simulations.
Concluding remarks can be found in section 8.

2. GLOSSARY AND ACRONYMS
BAR-SGE method: method based on the Bennett
Acceptance Ratio to update optimal weights in serial
generalized ensemble simulations.
MBAR: Multistate Bennett Acceptance Ratio.
Multiensemble methods/simulations/techniques: alterna-
tive term employed to indicate both serial and parallel gen-
eralized ensemble methods/simulations/techniques.
MWT: MultiWindow Tempering.
Optimal weights: alternative term employed to denote
the dimensionless free energies of the λ ensembles.
PGE: Parallel Generalized Ensemble.
RE: Replica Exchange.
Replica: a “copy” of the simulated system (or simulation
walker) running through the λ ensembles.
Replica transition: a jump of a replica from the current λ
ensemble to a neighboring one, i.e., from a λn ensemble
to a λn+1 (or λn−1) ensemble.

SGE: Serial Generalized Ensemble.
SGE-1 simulation: serial generalized ensemble simu-
lation based on the BAR-SGE method and realized with
one replica.
SGE-8 simulation: serial generalized ensemble simu-
lation based on the BAR-SGE method and realized with
eight replicas.
SST: Simulated Solute Tempering.
λ ensemble: a λ-dependent ensemble in the context of
serial and parallel generalized ensemble methods.

3. THEORETICAL BACKGROUND: SERIAL
GENERALIZED ENSEMBLE METHOD

In SGE molecular dynamics simulations, one or more copies of
the system (replicas) realize independent trajectories in an ex-
tended phase space. This phase space includes the usual atomic
coordinates and momenta (from now on denoted as x and p,
respectively) and a discretized variable associated with thermo-
dynamic ensembles which may have different Hamiltonians as
well. The evolution of the replicas in the (x,p) subspace occurs
as in conventional molecular dynamics simulations, while the
“motion” in the space of the additional variable, which prac-
tically corresponds to a path through the various ensembles, is
realized in a Monte Carlo fashion. In this section, we illustrate
the general principles of the SGE method and derive the
expression for the basic quantity, namely the probability of
accepting a replica jump from one ensemble to another.
Let us indicate a generic dimensionless Hamiltonian asso-

ciated with the nth ensemble as hn(x,p),
37 where n ∈ (1, 2, ..., N),

with N being the (finite) number of ensembles. The partition
function of the nth ensemble is

∫=
Γ

−Z x pe d dn
h x p( , )n

(1)

where Γ indicates that the domain of integration is the whole
(x,p) phase space. In simulated tempering simulations, the
dimensionless Hamiltonian is hn(x,p) = βnH(x,p), where H(x,p)
is the physical Hamiltonian and βn = (kBTn)

−1, kB being the
Boltzmann constant and Tn the temperature of ensemble n. If,
on the other hand, all ensembles have the same temperature,
but the Hamiltonian of ensemble n is expressed parametrically
through the variable λn, then the dimensionless Hamiltonian
can be written as

= β λh x p H x p( , ) ( , ; )n n (2)

There is large freedom in choosing the λ-dependence of the
Hamiltonian. The variable can simply scale some potential
energy term or be correlated with an arbitrary collective co-
ordinate of the system through an additional potential term, or
even correspond to the pressure. It is also possible to construct
a generalized ensemble for many parametric variables,38 but
such a possibility will not be addressed here. Multiensemble
algorithms have a different implementation depending on
whether the temperature is included in the collection of the
parametric variables or not. Here, we adhere to the most gen-
eral context without specifying any form of hn(x,p), thus deriv-
ing a general expression for the acceptance probability. The
specific algorithms supplied with the ORAC program will be
illustrated in section 4. In SGE simulations, the probability of a
microstate (x,p) in the nth ensemble (from now on denoted as
(x,p)n) is proportional to exp[−hn(x,p) + gn], where gn is a
weight factor defined for each ensemble n ∈ (1, 2, ..., N).

Figure 1. Representation of the Φ and Ψ angles in alanine dipeptide.
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The partition function of the extended ensemble described by
x, p, and λn is

∫∑ ∑= =
= Γ

− +

=
Z x p Ze d d e

n

N
h x p g

n

N

n
g

1

( , )

1

n n n

(3)

where Zn is the partition function of the system in the nth
ensemble (eq 1).
In practice, SGE simulations work as follows. A single simu-

lation is started in a specific ensemble using a molecular dy-
namics scheme, and at (not necessarily) regular time intervals,
attempts are made to change the current microstate, say (x,p)n,
to another microstate of a different ensemble, (x′,p′)m. Since
acceptance rates are correlated to the overlap between
ensembles, the final ensemble m is typically chosen close to the
initial one, namely, m = n ± 1.39 In principle, the initial and
final microstates can be defined by different coordinates and/or
momenta (x ≠ x′ and/or p ≠ p′), though the condition x = x′ is
usually adopted. Moreover, in conventional simulated temper-
ing simulations, when a replica transition is accepted, it is
common practice to rescale the atomic momenta to the target
temperature26 (p ≠ p′). We point out that such a rescaling is
not strictly necessary; however, it is useful because it increases
the acceptance probability of the transition by making it pos-
sible to eliminate the kinetic energy from the acceptance ratio
(eq 6 below). By contrast, when temperature is constant across
ensembles (eq 2), as in our implementation of SGE, no re-
scaling of momenta is needed: x = x′ and p = p′. The prob-
abilities of conjugated replica transitions, (x,p)n → (x,p)m and
(x,p)m → (x,p)n, must satisfy the detailed balance condition:

→ = →P x p P n m P x p P m n( , ) ( ) ( , ) ( )n m (4)

where Pn(x,p) is the probability of the microstate (x,p)n in the
extended ensemble (whose partition function is that of eq 3):

= − − +P x p Z( , ) en
h x p g1 ( , )n n (5)

In eq 4, P(n → m) is shorthand for the conditional probability
of the transition (x,p)n → (x,p)m to happen given the system is in
the microstate (x,p)n (with analogous meaning of P(m → n)).
Using eq 5 together with the analogous expression for Pm(x,p)
in the detailed balance and applying Metropolis’s criterion,
we find that the transition (x,p)n → (x,p)m is accepted with
probability

→ = − + −n macc[ ] min(1, e )h x p h x p g g( , ) ( , )n m m n (6)

Note that, according to Metropolis, the above expression
holds only if the transition (x,p)n → (x,p)m and its conjugated
(x,p)m → (x,p)n are attempted with the same probability.
Usually, upward and downward replica transitions ((x,p)n → (x,p)n+1
and (x,p)n → (x,p)n−1, respectively) are picked with probability
equal to 0.5. The probability of sampling a given ensemble is

∫= =
Γ

−P P x p x p Z Z( , )d d en n n
g1 n

(7)

Uniform sampling sets the condition Pn = N−1 for each
ensemble, which leads to the equality

= − + ⎜ ⎟
⎛
⎝

⎞
⎠g Z

Z
N

ln lnn n (8)

Equation 8 implies that, to get uniform sampling of the en-
sembles, the difference gm − gn in eq 6 must be replaced with
fm − f n (from now on denoted as Δf n→m), where f n is the

dimensionless free energy related to the actual free energy of
the ensemble n by the relation f n = βFn = −ln Zn, where β is the
inverse temperature of the ensembles. BAR-SGE is a method to
determine the f n free energies, also referred to here as optimal
weights.

4. IMPLEMENTATIONS OF THE SERIAL GENERALIZED
ENSEMBLE METHOD (IN THE ORAC PROGRAM)

4.1. Simulated Solute Tempering. The ability of simu-
lated tempering2,3 to overcome free energy barriers arises from
the fact that the free energy surface becomes flatter as the tem-
perature increases or, in other words, that the dynamics of the
system becomes insensitive to the roughness of the potential
energy with increasing temperature. The same effect can there-
fore be obtained by scaling the potential energy of the system
by some positive factor smaller than one and keeping the tem-
perature fixed. The smaller the factor, the higher the virtual
temperature of the replica. Such a strategy is exploited, for
example, in the Hamiltonian RE method,8,9,34 where different
replicas are characterized by different interatomic interactions
rather than by different temperatures.
Therefore, following the idea first proposed by Li et al.,12 the

ORAC program has been supplemented by the possibility of
applying tempering to different parts of the potential energy,
allowing the scaling of specific types of interactions (e.g., solute−
solute and solute−solvent interactions rather than solvent−solvent
interactions). The adopted approach is similar to the simulated
solute tempering (SST) proposed by Denschlag et al.,11 that was,
in turn, inspired by RE solute tempering of Liu et al.10 However,
unlike standard implementations of solute tempering, the “solute”
can be any segment of the system, generically intended as a
subset of atoms, not necessarily correlated in space. The
definition of segment is in principle arbitrary, but good choices
should account for the portions of system strongly coupled to
the relevant coordinates for the process under study. This allows
one to minimize the number of degrees of freedom involved in
replica transitions and, hence, the number of λ ensembles for a
given λ range.12 As a result, the average time for delivering a
replica from the lowest to the highest λ value and vice versa
(round-trip time) is substantially reduced. Another significant
difference with Denschlag’s11 SST implementation, is that in
our approach a replica transition does not imply a temperature
change but rather a potential energy scaling.
The algorithm works as follows. We define the segment as a

subset of atoms of the system that may include disconnected
portions of the solute and selected solvent molecules as well;
the remaining atoms define the environment around the seg-
ment. The global potential energy, V(x), can be partitioned as

= + + +V x V x V x V x v x( ) ( ) ( ) ( ) ( )ss se ee qr (9)

where Vss(x), Vse(x), and Vee(x) include the segment−segment,
segment−environment, and environment−environment inter-
actions, respectively, stripped of the reciprocal lattice electro-
static energy, vqr(x). The partitioning of vqr(x) is not realized
because, in the particle mesh Ewald approach40,41 employed
in ORAC,33 segment−segment, segment−environment, and
environment−environment contributions to vqr(x) cannot be
separated. As we will see, the potential energy partitioning of
eq 9 allows one to leave vqr(x) out of energy scaling in replica
transitions. From the sampling standpoint, this is however ir-
relevant, because vqr(x) is a long-range potential, and thus it is
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rather insensitive to structural variations with respect to the
short-range energy components.
A further partitioning of Vss(x), Vse(x), and Vee(x) is also

done on the basis of the different kinds of intra- and inter-
molecular potential energy terms. In particular, we split these
potential energies according to the following physically justified
subdivision:

= + +

= +

= +

α α α α

α α α

α α α

v x v x v x v x

v x v x v x

v x v x v x

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 str ben ito

2 pto 14

3 lj qd (10)

where α denotes the type of interacting portions of the system
(ss, se, or ee). The first potential energy term collects all contri-
butions that generate “fast” motions: stretching, vstr

α (x); bend-
ing, vben

α (x); and improper torsional interactions, vito
α (x). The

second term collects the proper torsional interactions, vpto
α (x),

and the so-called 1−4 interactions, v14
α (x). The third term

collects all of the nonbonded interactions, namely, the Lennard-
Jones energy, vlj

α(x), and the direct lattice electrostatic energy,
vqd
α (x). We refer to ref 33 (eqs 4−13) for a complete discussion
of the interaction potential energies and of the detailed
meaning of the symbols in eq 10. Thus, the potential energies
Vss(x), Vse(x), and Vee(x) can be represented by vectors
whose components are in eq 10. For example, vse(x) ≡
(v1

se(x),v2
se(x),v3

se(x)), with Vse(x) = v1
se(x) + v2

se(x) + v3
se(x).

Using such notation, we propose the following expression for
the dimensionless Hamiltonian of a replica in ensemble n:

λ λ= β · + · +

+ +

h x p x x V x

v x u p

v v( , ) [ ( ) ( ) ( )

( ) ( )]
n n n

ss
ss

se
se ee

qr (11)

where u(p) is the kinetic energy of the system, dependent on
the atomic momenta p. In molecular dynamics simulations,
u(p) may include additional energy contributions dependent on
variables specific to the adopted thermodynamic environment
(constant-(p,T) ensembles, constant-(V,T) ensembles, etc.).
For instance, if constant-(p,T) simulations are carried out, then
u(p) also includes the energies needed for keeping constant
both pressure and temperature (the pV term and the kinetic
energies of thermostat and barostat42). The vectors λn

ss and λn
se

account for independent changes of the intra- and inter-
molecular energy contributions in replica transitions (eq 10). Like
in solute tempering schemes, the environment−environment
interactions are constant across ensembles. Note that the
original dimensionless Hamiltonian is associated with the en-
semble for which the relation λn

ss = λn
se = (1, 1, ...,1) holds. In

eq 11, Vee(x), vqr(x), and u(p) do not change in replica transi-
tions and therefore do not affect the acceptance probability.
The acceptance probability for an attempted (x,p)n → (x,p)m
transition is obtained by substituting eq 11 into eq 6 and
assuming gn = f n in the latter:

→

= λ λ λ λβ − · + − · +Δ →

n macc[ ]

min(1, e )x x fv v[( ) ( ) ( ) ( )]n m n m n m
ss ss

ss
se se

se

(12)

where Δf n→m = fm − f n.
From the point of view of a molecular dynamics simula-

tion, the advantage of using our SST approach with respect to
conventional simulated tempering or the SST proposed in
ref 11 is two-fold. First, as a replica has the same operating

temperature in all λ ensembles, one does not have to rescale the
atomic momenta after a successful replica transition. Second,
since the mean atomic velocities are the same throughout the
extended system, one does not have to adapt the simulation
time-step for preserving the quality of the integrator, as it
should be done instead when using other methods. In the
ORAC SST implementation, one or more replicas may run
independently, apart from when replicas exchange information
to update the optimal weights (see discussion in section 5).
Each replica is thus associated with a different CPU process
of a parallel simulation. When a CPU process periodically
writes out the atomic coordinates of the corresponding replica
(typically in pdb or xyz format), one must also keep track of
the vectors vss(x), vse(x), λn

ss, and λn
se (the program does this

automatically) to apply a reweighting analysis13−15 to con-
figurations sampled at thermodynamical conditions different
from the target one.
In principle there are not strong limitations in setting λn

α.
However, a typical choice is to set the components related to
v1
α(x) (see eq 10) equal to 1 for all of the ensembles. In fact,
there is little advantage for conformational sampling in soften-
ing degrees of freedom that do not contribute to the molecular
flexibility. With this choice, these interactions do not enter
the acceptance probability of eq 12, and a further lowering of
the degrees of freedom is gained. On the other hand, con-
formational transitions are mainly driven by torsional and
nonbonded interactions, so it becomes convenient to “heat
up” these degrees of freedom by scaling the corresponding
potential functions.
Obviously, molecular dynamics simulations can also be per-

formed without defining any segment in the simulated system.
In such a case, a sort of Hamiltonian tempering8,9 is realized,
where scaling is applied to the whole potential energy. The di-
mensionless Hamiltonian of a replica in ensemble n is written
as

λ= β · +h x p x u pv( , ) [ ( ) ( )]n n (13)

where u(p) has the usual meaning. In eq 13, the whole
potential energy V(x) is partitioned as in eq 10 and is thus
represented by the vector v(x) ≡ (v1(x),v2(x),v3(x)), with
vqr(x) being included into v3(x). The acceptance probability for
an attempted (x,p)n → (x,p)m replica transition is easily
obtained substituting eq 13 into eq 6. Given the similarity
with Hamiltonian RE,8,9 we term this approach Hamiltonian
simulated tempering.

4.2. Multiwindow Tempering. A further interesting
feature of ORAC is the possibility of performing SGE simu-
lations based on multiple-window umbrella sampling.35,36 In
multiple-window umbrella sampling, the sampling is realized in
the space of a user-defined collective coordinate through the
addition of constraining potential energy terms, called window
potentials, to the Hamiltonian of the system. The method was
originally devised to perform a number of independent simu-
lations of copies of the system with Hamiltonians supple-
mented with different window potentials. Therefore, each
simulation forces the system to visit configurational states
characterized by different values of the collective coordinate.
At the end of the simulations, it is possible to calculate the
potential of mean force along the collective coordinate and, in
general, any other equilibrium quantity using weighted
histogram analysis methods.13−15

The extension of multiple-window umbrella sampling
to the framework of SGE simulations is straightforward.
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Each ensemble corresponds to a given window potential. The
trajectory of a replica is started in one ensemble; then, at
established time intervals, transitions of the replica toward a
neighboring ensemble are attempted. Because of the peculiarity
of replicas to move through ensembles with different window
potentials, we term this approach MultiWindow Tempering
(MWT). A description of the method is reported in Appendix A.
Note: thermodynamic expectations in SST and MWT are

calculated via multistate Bennett acceptance ratio analysis15

(MBAR). The basic equations of MBAR are given in section I
of the Supporting Information.

5. CALCULATION OF OPTIMAL WEIGHTS
In this section, we report the basic equations needed to cal-
culate the optimal weights via BAR-SGE and a description of
the self-consistent algorithm. A more detailed discussion can be
found in ref 26.
In SGE simulations, the main quantity to be calculated is the

acceptance probability of eq 6. In order to simplify the notation
in the following discussion, we rewrite eq 6 as

→ = − → +Δ →n macc[ ] min(1, e )W n m f[ ] n m (14)

where W[n → m] = hm(x,p) − hn(x,p) can be interpreted as the
generalized dimensionless work done on the system in the
(x,p)n → (x,p)m transformation.26,28 The specific expressions of
W[n→ m] for the SST and MWT are easily recovered from the
results of section 4.1 and Appendix A, respectively. The im-
portant aspect of the procedure is that the knowledge of
W[n → m] and W[m → n] stored for each replica during the
simulation allows us to evaluate Δf n→m. Thus, for each pair of
neighboring ensembles n and m, we generate two collections of
“instantaneous dimensionless work” elements: W1[m → n],
W2[m → n], ..., etc. and W1[n → m], W2[n → m], ..., etc. In-
dicating the number of elements with Nm→n and Nn→m, we can
find Δf n→m by solving the equation26,28,43

∑

∑

+

− + =

=

→
→

→ −Δ
−

=

→
→

→ +Δ
−

→
→

→
→

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

N
N

N
N

1 e

1 e 0

i

N
n m

m n

W n m f

j

N
m n

n m

W m n f

1

[ ]
1

1

[ ]
1

n m
i n m

m n
j n m

(15)

which corresponds to the Bennett acceptance ratio29 for di-
mensionless quantities. It is clear that to employ eq 15, both n
and m ensembles must be visited at least once. If statistics are
instead retrieved from one ensemble alone, say n, then we must
resort to a different approach. In the limit that only one work
collection (say, the n → m collection) is available, eq 15
becomes43

∑=−Δ
→

−

=

− →→
→

Ne ef
n m

i

N
W n m1

1

[ ]n m
n m

i

(16)

In this equation, we recognize the popular Zwanzig formula for
free energy perturbation30 and the Jarzynski equality44 for
instantaneous realizations.
In an SGE simulation realized in a space of N ensembles, the

Δf1→2, Δf 2→3, ..., Δf N−1→N quantities have to be estimated. The
protocol can be summarized in a few points.

(1) At the beginning of the simulation, the replica is assigned
to a randomly chosen ensemble, and the sampling starts
with the established molecular dynamics protocol. For
the sake of simplicity, here we will describe the algorithm
for only one replica, leaving the discussion of multiple-
replica simulations to the final part of this section.

(2) When the replica is in ensemble n, the work samples
W[n → n + 1] and W[n → n − 1] are stored into CPU
memory, and the numbers of stored samples, Nn→n+1 and
Nn→n−1, are updated. These operations are accomplished
every La steps, taking some care in storing work samples
that are uncorrelated. This is because, while correlated
work values do not improve significantly the accuracy of
free energy estimates via eq 15, a large number of work
samples (i.e., large Nn→m values) raises their computa-
tional cost.

(3) Every Lb steps, such that Lb is at least 2 or 3 orders of
magnitude greater than La, a free energy estimate is at-
tempted on the basis of eq 15 or eq 16. The scheme
adopted for a generic Δf n→n+1 follows.
(3a) First, we check if both conditions Nn→n+1 > N′ and

Nn+1→n > N′ are met. In such a case, eq 15 is
applied using the stored dimensionless works
(see point 2). The threshold N′ is used as a con-
trol parameter for the accuracy of the calculation.
Note that this estimate of Δf n→n+1 is not used as
such in the acceptance probability of eq 14. Rather,
it is employed to update the actual optimal weight
applying standard formulas from maximum like-
lihood considerations, as described in Appendix B.
After updating the optimal weight from eq 25,
we reset Nn→n+1, Nn+1→n, W[n → n + 1], and
W[n + 1 → n] for the next independent esti-
mate of Δf n→n+1. This step is realized for each n ∈
(1, 2, ..., N − 1).

(3b) If the criteria needed to apply eq 15 are not met
and no optimal weight is still available from eq 25
(see point 3a), then we try to apply eq 16. In such
a case, the resulting free energy difference is used
directly as the optimal weight in the acceptance
probability. In particular, two independent esti-
mates are attempted: one employed in the accep-
tance probability of upward replica transitions,
Δf n→n+1, and the other employed for downward
transitions, Δf n+1→n (see next point 4). However,
in order to apply eq 16 for estimating Δf n→n+1 and
Δf n+1→n, the conditions Nn→n+1 > N′ and Nn+1→n >
N′ must, in turn, be satisfied. We stress again that
this procedure is only targeted to furnish a reliable
evaluation of optimal weights when they are still
not available from the bidirectional algorithm illus-
trated at point 3a.

(3c) If none of the above criteria is met, then the opti-
mal weight is not updated and conventional sam-
pling continues. Storage of dimensionless works as
described in point 2 continues as well.

(4) Every Lc steps, a transition (x,p)n → (x,p)n±1 is attemp-
ted on the basis of the acceptance probability of eq 14.
If the optimal weight for the chosen upward/downward
transition is still not available from the methods de-
scribed in points 3a and 3b, then the transition is not
realized. The probabilities of generating upward and
downward replica transitions are 0.5.
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In principle, the number M of running replicas can vary
from one to infinity. However the best computational per-
formance can be obtained enforcing a one-to-one correspond-
ence between replicas and computing processors. A rough
parallelization could be obtained performing M independent
single-replica SGE simulations and then drawing the final data
from all replicas to get augmented statistics. However, the cal-
culation of the optimal weights would be much improved if
they were periodically updated during the simulation on the
basis of the data drawn on the fly from all replicas. This is just
what ORAC does. In this respect, we remark that the multiple-
replica BAR-SGE algorithm is prone to work efficiently also in
distributed computing environments. The phase of the simu-
lation where information is exchanged is the one described in the
above point 3. It must be noted that, when an optimal weight
update is performed, the stored work arrays (see point 2) do not
need to be communicated among the replicas/processors. The
sums appearing in eqs 15, 16, and 24 are perfectly parallelizeable
in an MPI environment (like in ORAC). The computational cost
arising from computer communications is further reduced
because optimal weights can be updated rarely. Furthermore,
in order to speed up the convergence, the initial distribution of
the M replicas throughout the λ ensembles is roughly uniform,
namely replica 1 in the λ1 ensemble, replica 2 in the λ2 ensemble,
and so on.

6. SIMULATIONS AND SYSTEM
The system is made of one alanine dipeptide molecule (Figure 1)
and 288 water molecules. The dipeptide is modeled using the
AMBER03 force field,45 while the TIP3P model46 is used for
water. Lorentz−Berthelot mixing rules are employed to account
for the Lennard-Jones interactions between different kinds of
atoms. Four simulations have been carried out: one RE simu-
lation with eight replicas, two SGE simulations with one and
eight replicas (denoted as SGE-1 and SGE-8 in the following),
and one conventional canonical simulation. All simulations are
realized in the constant-(V,T) thermodynamic ensemble adop-
ting a cubic box with 21 Å side-lengths with standard periodic
boundary conditions. The temperature control (298 K) is
achieved using a Nose−́Hoover thermostat.47 Electrostatic forces
are treated with the smooth particle mesh Ewald method41 using
a fourth order B-spline interpolation polynomial for the
charges,33 an Ewald parameter of 0.43 Å−1, and a grid spacing
of 0.875 Å for the fast Fourier transform calculation of the
charge weighted structure factor. The cutoff distance for the
nonbonded interactions is 9.5 Å. A five time-step r-RESPA
integrator,48 as described in ref 33, is employed for integrating
the equations of motion (with a largest time step of 6 fs). The
initial system configuration is generated by placing the alanine
dipeptide (Φ = −45.7° and Ψ = 152.7°) in the simulation box
together with 288 water molecules arranged in a cubic lattice.
Care has been taken to prevent overlap between dipeptide and
water molecules. The equilibration phase (the period of time
with no data storing) is very short: 3 ps with atomic velocity
scaling followed by 3 ps of free system evolution. The equi-
libration period has been taken to be intentionally short, to
enforce conditions unfavorable to BAR-SGE and to see how
it works when optimal weights are still inaccurate. In fact,
BAR-SGE is known to suffer from some difficulty at the begin-
ning of the simulation.26 In these stages, the lack of accurate
optimal weights makes the walk of replicas in λ space highly
unreliable (this aspect will be discussed in section 7). This
inaccuracy clearly affects the thermodynamical averages in the

first part of the production run. However, as optimal weights
reach a smooth time-dependent regime thanks to the onset of
the bidirectional algorithm (see point 3a in section 5), this
negative effect is going to be leveled off.
The two SGE simulations have been performed using the

SST method described in section 4.1. The same method34 has
been used for the RE simulation. In particular, the algorithm
with equal segment−segment and segment−environment scal-
ing is applied (λn

ss = λn
se = λn), the segment being defined by the

22 atoms of the alanine dipeptide (see eq 11 and 12 for the
expressions of the Hamiltonian and the acceptance probability).
Eight ensembles are included in the simulations, whose asso-
ciated λn vectors are reported in Table 1. In the following

section, we will denote a specific λ ensemble with the corres-
ponding vector λn. Note that, within each ensemble, the scaling
parameters for the vpto(x), v14(x), vlj(x), and vqd(x) potential
energy terms (λn

(2) and λn
(3) in Table 1) have been arbitrarily set

to be equal. As already stated, the “bonded” interactions, vstr(x),
vben(x), and vito(x), are not included in the criterion for the ac-
ceptance probability (λn

(1) = 1 for each n). In SGE-1 and SGE-8
simulations, the dimensionless works for optimal weight cal-
culation are recorded every 60 fs (La parameter introduced in
point 2 of section 5), while optimal weight updates are at-
tempted every 21 ps (Lb parameter introduced in point 3 of
section 5). The parameter La adopted to store work samples
ensures a loss of work correlation of about 50%, resulting from
the autocorrelation functions of the dimensionless work re-
ported in Figure 1S of the Supporting Information. The thres-
hold N′ (see points 3a and 3b in section 5) employed for the
number of work samples in the optimal weight update is 350. In
SGE and RE simulations, replica transitions are attempted
every 300 fs. The system snapshots are stored every 300 fs for
the subsequent data analysis. In all simulations, the total time
per replica is 12 ns, so that the overall sampling time is 96 ns
for the SGE-8 and RE simulations, while it is 12 ns for the
SGE-1 and canonical simulations.
All simulations have been performed with the 5.2 release of

the ORAC program33,34 (http://www.chim.unifi.it/orac).

7. RESULTS AND DISCUSSION

When comparing SGE to RE, we have to consider aspects
which range from the possibility of sampling the λ space ef-
fectively to the capability of the methods to overcome large free
energy barriers and hence to visit important configurational
states of the system. Although efficient λ-space sampling is a

Table 1. Components of the Vector λn ≡ (λn
(1),λn

(2),λn
(3))

Associated with Ensemble n for n = 1, 2, ..., 8a

ensemble λn
(1) λn

(2) = λn
(3)

λ1 1 1
λ2 1 0.75
λ3 1 0.50
λ4 1 0.30
λ5 1 0.15
λ6 1 0.08
λ7 1 0.03
λ8 1 0.01

aThe vector components, λn
(1), λn

(2), and λn
(3) correspond, respec-

tively, to the v1
α(x), v2

α(x), and v3
α(x) terms of the potential energy

decomposition of eq 10. The λ1 ensemble represents the unperturbed
system.
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requirement for any generalized ensemble method, be it of the
PGE or SGE type, it does not ensure by itself the achievement
of good configurational sampling. Therefore, a comparison
between multiensemble methods cannot disregard a direct
evaluation of their performances in exploring free energy land-
scapes.
Following these guidelines, we first analyze some time-

dependent feature correlated with the sampling of the λ space.
In this regard, we notice that, given the strong correlation between
λ-space sampling and λ-dependent free energy (see discussion
in section 3), the estimate of the latter could provide useful
complementary information. Thus, the λ-dependent free energy
is analyzed using two computational strategies, namely the a
posteriori reweighting technique MBAR15 (see section I of the
Supporting Information) and the BAR-SGE method employed
to update the λ-ensemble free energies during the SGE simu-
lations (see section 5). Establishing the efficiency of the updating
free energy algorithm is of basic importance for proving the
reliability and the self-consistency of BAR-SGE based simu-
lations. In the second part of this section, as a representative
example of free energy exploration, we report on the config-
urational sampling of alanine dipeptide in terms of the Φ and Ψ
dihedral angles (see Figure 1) by calculating the free energy
surface F(Φ,Ψ) = −kBT ln[g(Φ,Ψ)], where g(Φ,Ψ) is the
Φ−Ψ distribution function. We also provide an estimate of the
rate of overcoming a large free energy barrier occurring around
Φ = 0° in the Φ−Ψ space of the alanine dipeptide.
7.1. λ-Space Sampling. The first quantity to be monitored

for investigating λ-space sampling is certainly the mean ac-
ceptance probability of replica transitions between neighboring
λ ensembles. The mean acceptance probabilities for the SGE-1,
SGE-8, and RE simulations are reported in Table 2. Since in RE

simulations replica transitions occur via exchanges of re-
plica pairs, the numbers of upward and downward transitions
between two given λ ensembles are equal. Instead, such num-
bers can be different in SGE simulations because each replica
moves independently in the λ space. This explains why in
Table 2 a single estimate is given for RE, as compared to two
independent estimates for SGE. We point out that the values of
acceptance probabilities of contiguous pairs of ensembles
(λ1 → λ2, λ2 → λ3, and so on) are not supposed to follow a
special pattern. In fact, the λn parameters of Table 1 have been
tuned in a short RE simulation to give roughly comparable ac-
ceptance probabilities. However, some features are expected:
(1) in SGE simulations, upward and downward transitions

between two given λ ensembles (λn → λn+1 and λn ← λn+1,
respectively) must be accepted with equal probability in the
infinite time limit; (2) this probability does not depend on the
number of replicas but only on the λn and λn+1 parameter; (3)
for a given λ set, the acceptance probabilities of SGE simu-
lations will be greater than those of RE simulations.18,19,23 The
first feature is observed in both SGE simulations, though at a
different degree of accuracy. In fact, in SGE-8 simulations, the
absolute differences between the mean acceptance probabilities
of conjugated upward and downward replica transitions are on
average 0.4%, the maximum value being 0.9% (λ1 → λ2 and
λ1 ← λ2 transitions in Table 2). Due to statistical reasons, the
percentage increases to 1.3% for the SGE-1 simulation (the
maximum value of 2.2% also occurs for the λ1 → λ2 and λ1 ← λ2
transitions). In the limit of the statistical differences between
SGE-1 and SGE-8, the second feature above can also be verified
from the data of Table 2. The third feature is confirmed beyond
any statistical uncertainty: the average difference between
SGE-8 and RE mean acceptance probabilities (the former
being calculated as the arithmetic average of the upward
and downward values) is 16.1%, the smallest value of 15.5%
occurring for the λ5−λ6 pair.
The above results indicate that the replicas perform transi-

tions between neighboring λ ensembles with quite large prob-
ability, pointing to an effective λ-space sampling. A more
conclusive outcome for this issue can be obtained by analyzing
the time series of the λ ensembles visited by each replica. Such
series are drawn in Figure 2 for replicas randomly chosen from
the SGE-8 and RE simulations, and for the only replica of the
SGE-1 simulation. In order to highlight the oscillations and the
short time behavior of the time series, we limit the data of
Figure 2 to the first nanosecond. The complete sets of data for
SGE-8 and RE simulations are reported in Figures 2S and 3S of
the Supporting Information. Figure 2 shows that replica ran-
dom walks in λ space are realized in all simulations. In spite of
the larger acceptance probabilities of the SGE simulations with
respect to the RE simulation (see Table 2), in the long time
limit, the degree of diffusion of replicas through the λ space
seems not to differ significantly among the three runs. How-
ever, at short times, the first complete walk from the bottom to
the top ensemble and back requires increasingly long times in the
series RE < SGE-8 < SGE-1 (from 0.1 to 0.3 ns approximately).
This feature is known for the BAR-SGE methodology26 and is
ascribed to the inaccurate estimate of the optimal weights at the
beginning of the simulation. Reaching the random-walking
regime more or less quickly depends crucially on the rate with
which accurate optimal weights are achieved that, in turn,
increases with the number of running replicas. In RE simu-
lations, λ-ensemble free energies do not enter the acceptance
criterion for replica exchanges, and hence the random-walking
regime is reached more quickly than in SGE runs. Nevertheless,
when the whole simulation is considered, the average round-trip
times between the top and bottom ensembles become com-
parable: 0.15 ns (RE), 0.11 ns (SGE-8), and 0.12 ns (SGE-1).
In order to assess the differences between SGE and RE

methods in reaching the replica random-walking regime, we
have calculated a time-dependent population function, denoted
as Piα(t), aimed to quantify the fraction of time spent by a given
replica α in a given λi ensemble
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Table 2. Acceptance Probabilities of Replica Transitions (in
Percentage) Calculated in the Whole Simulation Time (12 ns
per Replica) for the SGE-1, SGE-8, and RE Simulationsa

SGE-1 SGE-8 RE

ensembles → → → → ⇌

λ1, λ2 43.1 40.9 41.3 42.2 24.8
λ2, λ3 38.8 38.8 37.7 38.1 22.2
λ3, λ4 41.4 41.3 42.3 42.8 25.5
λ4, λ5 40.3 38.3 38.7 38.7 22.8
λ5, λ6 49.9 47.9 49.5 49.0 33.8
λ6, λ7 40.9 38.9 38.7 39.0 23.1
λ7, λ8 42.8 41.8 42.6 42.9 27.0

aThe column “ensembles” reports the ensembles involved in replica
transitions, while the arrows indicate the direction of the transitions
(example: the right arrow denotes transitions from λn to λn+1).
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where niα(t) is the number of times the αth replica is found in
the ensemble λi during the time t and Ns is the number of en-
sembles. Thus, for each replica, there are Ns population
functions. It is evident that in the case of perfect replica random
walk (as it should be, in principle, for RE and SGE simulations),
each replica will spend the same amount of time in each λ
ensemble, that is, limt→∞niα(t) = limt→∞njβ(t), for any i, j, α, and
β, and thus limt→∞Piα(t) = Ns

−1. The eight population functions
determined for two replicas randomly chosen from SGE-8 and
RE simulations are reported in Figure 3. The complete sets of
data are reported in Figures 4S and 5S of the Supporting
Information. Comparing the Piα(t) functions with their infinite
time limit, Ns

−1 = 1/8, we see that, after an initial period with
large statistical uncertainty, convergence is going to be attained.
The most important aspect is however that no significant differ-
ences are observed between RE and SGE approaches. This
situation is even more evident by collecting the whole set of
information of Piα(t) in a unique quantity such as the root-
mean-square deviation of all Piα(t) functions from the
theoretical value Ns

−1

∑ ∑σ = −−
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αt N N N P t( ) ( ) [ ( )]p s

i

N N

s ir
1

1 1

1 2
s r

(18)

where Nr is the number of replicas. On the basis of the pre-
ceding discussion, the infinite time limit of σp(t) must be zero
when the replicas realize completely random walks. The time

series of the relative value (coefficient of variation) of σp(t),
defined as σp(t)/Ns

−1, are drawn in Figure 4. As noted above,
apart from the early time behavior, SGE-8 and RE sim-
ulations give comparable trends. Below ∼0.2 ns, σp(t) is
greater for the SGE-8 simulation probably because of the
inaccurate initial estimates of optimal weights that lead to a
nonuniform population of λ ensembles. The convergence
rate for the SGE-1 simulation is slower than for SGE-8 and
RE simulations, though above 4 ns the three σp(t) curves are
comparable.

7.2. λ-Ensemble Free Energies. As demonstrated in
section 3, uniform sampling of λ ensembles can be obtained
only when the weight factors correspond to λ-ensemble free
energies. Therefore, estimating the rate of convergence of
λ-ensemble free energies and, in particular, the free energy
differences entering the acceptance probabilities (eq 14) is a
basic test for evaluating the performances of the BAR-SGE
protocol. In fact, slow convergence may not ensure an effective
sampling of the λ space, thus making it difficult to overcome
phase space energy barriers in a reasonable amount of com-
puter time. In Figure 5, we report the time series of four repre-
sentative dimensionless free energy differences (Δf n→n+1 with
n = 1, 3, 5, 7), calculated with BAR-SGE during the SGE-1 and
SGE-8 runs. The other free energy differences are reported in
Figure 6S of the Supporting Information. We point out that
such free energy differences are computed by exploiting the
complete BAR-SGE procedure (point 3a of section 5), i.e.,
weighting each independent estimate by the inverse of its

Figure 2. Time series of the m label of λm related to a randomly
chosen replica for RE and SGE-8, and to the only one replica in
SGE-1. (a) RE simulation, (b) SGE-8 simulation, and (c) SGE-1
simulation. For the sake of clarity, only the data of the first nanosecond
are reported.

Figure 3. Population function Piα(t) (eq 17) for two replicas randomly
chosen from SGE-8 and RE simulations (left and right panels,
respectively). To highlight the early time behavior, only data for half
the simulation run are shown. The correspondences between colors
and λ ensembles follow: black/λ1, red/λ2, green/λ3, blue/λ4, orange/λ5,
brown/λ6, magenta/λ7, violet/λ8. The value corresponding to a
homogeneous distribution, i.e., 12.5, is represented by the dashed lines.

Figure 4. Variation coefficient of the root-mean-square deviation of
the ensemble populations, σp(t)/Ns

−1, as a function of time (see eq 18).
Dashed line, RE simulation; solid line, SGE-8 simulation; dotted line,
SGE-1 simulation.
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variance as described in Appendix B. In Figure 5, we also report
the reference value calculated from the RE simulation using
MBAR with the complete set of data (12 ns per replica). It is
noticeable that, in the SGE-8 simulation, the λ-ensemble free
energy differences have almost reached convergence above
∼0.2 ns. Again, the lower statistics of the SGE-1 run do not
allow a convergence of comparable quality. In spite of this, the
absolute values of the deviations of the free energy differences
from the reference (“exact”) values after 6 ns, denoted as
δ(Δf n→n+1), fall in the range 0.006−0.053. From these devia-
tions, one can estimate the error on the ratio Pn/Pm of the
probabilities of visiting the λn and λm ensembles (see eq 7).
The uncertainty δ(Δfm→n) propagates exponentially to the ratio
Pn/Pm:

= =Δ ±δ Δ ±δ Δ→ → →
P
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In the case of the SGE-1 simulation, taking the largest value for
δ(Δfm→n) (0.053 at 6 ns), we obtain Pn/Pm ≈ 1 ± 0.05. The
same estimate for the SGE-8 simulation gives a ratio in the
interval 1 ± 0.02. A rough estimate of the error on the ratio
between the end ensemble probabilities, PNs

/P1, can also be ob-
tained by assuming that δ(Δf1→Ns

) = ∑n = 1
Ns−1δ(Δf n→n+1). For the

SGE-1 and SGE-8 simulations at 6 ns, the ratios PNs
/P1 fall in the

ranges 1 ± 0.25 and 1 ± 0.04, respectively. In light of the
restrictive assumptions, these results confirm the relatively good
accuracy of the method.
The data of Figure 5 point to a good efficiency of BAR-SGE

for achieving fast convergence of optimal weights. Further
insight can be obtained from comparing the free energy
differences Δf n→n+1 calculated with BAR-SGE and a posteriori
with MBAR. Such a comparison helps in understanding two
important aspects of the problem. One is the rate of con-
vergence of BAR-SGE optimal weights (specifically, this is
obtained from the comparison between BAR-SGE and RE free
energy differences, the latter from MBAR), while the other is
the relative efficiency of BAR-SGE with respect to the more
accurate MBAR method applied on the trajectories of the SGE
simulations. The time series for the four free energy differences

discussed above are reported in Figure 6. The remaining sets of
data are in Figure 7S of the Supporting Information. As usual,
owing to poor statistics, SGE-1 and short-time SGE-8 series are
affected by larger uncertainty. In some cases, above 0.2 ns both
calculations for the SGE-8 simulation (BAR-SGE and MBAR)
show an even faster convergence than RE. The reasons for the
(sometimes) better performances of BAR-SGE with respect to
RE are actually unclear and even contrary to expectations. In
fact, while in MBAR all replica configurations contribute to the
calculation of the λ-ensemble free energies (see section I of the
Supporting Information), in BAR-SGE only data collected from
neighboring λ ensembles are exploited (see eq 15). Therefore,
we are inclined to consider these features as simply fortuitous.
It is also worth noting that the time series calculated for the
SGE simulations with BAR-SGE and MBAR have a very close
trend. This is explained by the fact that in MBAR the major
contribution to a given free energy difference Δf n→n+1 is given
by the data collected from the λn and λn+1 ensembles. Con-
sistently with this fact, only these data are employed in the
BAR-SGE algorithm (see eq 15).

7.3. Sampling the Φ−Ψ Conformational Space. As
often remarked, the power of SGE and PGE (multiensemble)
techniques is directly associated with the possibility of over-
coming high free energy barriers and hence to the possibility of
visiting system configurations not accessible to conventional
computer simulations. This important feature is investigated
here by focusing on the conformational space of the dihedral Φ
and Ψ angles of alanine dipeptide (see Figure 1). Such a choice
is particularly suitable for our aim because the conformational
space for −30° < Φ < 120° cannot be accessed with a standard
canonical simulation. This is shown in Figure 7, where we
report the time series of the Φ angle values recorded during the
canonical molecular dynamics simulation and during trajecto-
ries of representative replicas of the SGE-1, SGE-8, and RE
simulations. Note that the setup of the canonical simulation,
especially the initial configuration, is the same as that of multi-
ensemble simulations. While conformational states with
Φ < −30° are explored with all types of methods, the states

Figure 5. Time series of selected dimensionless free energy differences
between neighboring λ ensembles (see y axes) calculated using BAR-
SGE. Thin dashed lines, SGE-1 simulation; solid lines, SGE-8
simulation; horizontal dashed lines, reference value calculated from
RE simulation using MBAR with all trajectory data (12 ns per replica).
The curves are drawn until 6 ns to highlight the early time behavior.

Figure 6. Time series of selected dimensionless free energy differences
between neighboring λ ensembles (see y axes). Red lines, RE
simulation using MBAR; blue lines, SGE-1 simulation using MBAR;
green lines, SGE-8 simulation using MBAR; black lines, SGE-8
simulation using BAR-SGE (same as in Figure 5); dashed lines,
reference value calculated from RE simulation using MBAR with all
trajectory data (12 ns per replica). The curves are drawn until 6 ns to
highlight the early time behavior.
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characterized by Φ > −30° are visited only with multiensemble
techniques.
The effectiveness of multiensemble techniques in over-

coming the free energy barrier observed at Φ ∼ 0°9 may be
evaluated by directly counting the number of times that alanine
dipeptide realizes a conformational transition from Φ = −30°
to Φ = 30° and vice versa, regardless of the Ψ value. The re-
sults, reported in Table 3, show that SGE simulations generate

more conformational transitions with respect to RE. As shown
in Figure 7, no conformational transitions have been found
during the canonical simulation. However, in view of the large
spread of the values in the table, it is fair to say that the per-
formances of RE and BAR-SGE are comparable.
A more detailed picture of the aspects discussed above is

obtained from the free energy projection onto Φ−Ψ space, i.e.,
F(Φ,Ψ) = −kBT ln[g(Φ,Ψ)], where g(Φ,Ψ) is the Φ−Ψ dis-
tribution function calculated by means of MBAR reweighting
(see eq 7 of the Supporting Information). The free energies
F(Φ,Ψ) for the canonical and multiensemble simulations are
depicted in Figure 8. We note that in the range 50° < Φ < 100°,
the free energy surface has a relative minimum with energy
higher, by ∼20 kJ mol−1, than that of the two absolute minima
falling at (Φ,Ψ) ≃ (−70°, −20°) and (Φ,Ψ) ≃ (−70°, 160°). It
is remarkable that, because of the large free energy barrier
around Φ ∼ 0°, this minimum is revealed only with RE and
SGE simulations. Figure 8 also highlights the effect of sampling
on the free energy calculation (compare the free energy

surfaces from RE and SGE-8 simulations to that obtained from
the SGE-1 simulation). The difference between SGE-1 and
SGE-8 simulations is basically due to statistical reasons, as can
be proved by comparing the F(Φ,Ψ) functions calculated re-
spectively from the whole SGE-1 simulation data (with overall
sampling time of 12 ns) and from the SGE-8 simulation by
limiting the time per replica to 1.5 ns (which amounts to 12 ns
cumulatively). As expected, the two free energy surfaces do not
show significant differences (see Figure 8S of the Supporting
Information). For our aim, it is however important to observe
that RE and SGE-8 simulations, having both an overall sampl-
ing time of 96 ns, give free energy surfaces that are almost indis-
tinguishable (see Figure 8). These surfaces are comparable to
those calculated with other methods,9,31 though the free energy
maxima appear overestimated. This can be ascribed to the fact
that high free energy configurations are mainly sampled from
replicas in low-λ ensembles, whose weights in thermodynamic
averages are very small, and hence the error is large. The per-
formances of multiensemble techniques in reproducing free
energy barriers are somehow comparable to those of conven-
tional umbrella sampling simulations,35 in which configurations
generated at high temperatures are reweighted in the low-
temperature target ensemble. The inaccuracy in reweighting
from low-λ ensembles is also responsible for the large error of
SGE-1 in estimating the two smaller free energy barriers along
the Ψ direction at about −180° < Φ <− 90°, Ψ ∼ − 110° and
−180° < Φ < −90°, Ψ ∼ 80°. In this respect, note that the time
spent by the SGE-1 replica in the target ensemble, i.e., λ1, which
contributes mostly to the statistics of F(Φ,Ψ), is about 1/8 the
sampling time of the canonical simulation. This also explains
the largely noisy behavior of the SGE-1 free energy surface with
respect to the canonical counterpart.
In order to quantify the differences between the free energy

surfaces of Figure 8, we resort to the analysis of the deviation of
g(Φ,Ψ) from a reference Φ−Ψ distribution function. Since we
are dealing with the performances of BAR-SGE in relation to
the well-established RE technique, we take the distribution
calculated from the latter method as the reference. In particular,
we estimate
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2

(20)

where gref(Φi,Ψj) is the RE reference distribution function at
the point (Φi,Ψj) calculated by exploiting all stored config-
urations and G is the number of histogram channels employed
for Φ and Ψ. The subscript t in gt(Φ,Ψ) denotes the trajectory
time considered for the calculation of the distribution function.
Moreover, in eq 20, the distribution functions are both normal-
ized, i.e.,

∑ ∑ ∑ ∑Φ Ψ = Φ Ψ =
= = = =

g g( , ) ( , ) 1
i

G

j

G

i j
i

G

j

G

t i j
1 1

ref
1 1 (21)

The s(t) functions for the SGE-1, SGE-8, and RE simulations
are reported in Figure 9. For the RE simulation, s(t) is exactly
zero at 12 ns because of the assumption gref(Φ,Ψ) = g12ns

RE (Φ,Ψ),
with obvious meaning of the superscript and subscript. The
remarkable but not surprising result is that the trends of the
SGE-8 and RE s(t) functions are comparable for the whole simu-
lation time. As usual, the SGE-1 curve is less accurate because of

Figure 7. Time series of the Φ angle. (a) canonical simulation, (b) RE
simulation, (c) SGE-1 simulation, and (d) SGE-8 simulation. In RE
and SGE-8, data of one replica chosen at random are shown.

Table 3. Number of Conformational TransitionsΦ = −30°⇌
Φ = 30° Realized by the Alanine Dipeptide During the RE,
SGE-1, and SGE-8 Simulations (12 ns per Replica)

replica RE SGE-8 SGE-1

1 346 422 436
2 338 398
3 312 428
4 248 388
5 382 370
6 386 338
7 290 369
8 376 344
mean value 334.7 382.1 436
std. deviation 48.9 33.2
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poorer statistics. This is confirmed by comparing the final s(t)
value of the SGE-1 simulation to those of the SGE-8 and RE
simulations calculated at 1.5 ns, namely, the time at which the
overall sampling of SGE-8 and RE equals the SGE-1 one. Such
values are indeed similar: s(t) = 2.5 × 10−4 for SGE-1, s(t) =
3.2 × 10−4 for SGE-8, and s(t) = 2.7 × 10−4 for RE.
In summary, the time series of Φ, the free energy F(Φ,Ψ),

and the related data on g(Φ,Ψ) (Figures 7−9, respectively)

indicate a strong similarity of RE and BAR-SGE based methods
in sampling the conformational space of alanine dipeptide.

8. CONCLUDING REMARKS
In simulated tempering and, more generally, in serial gen-
eralized ensemble (SGE) simulations, the weight factors entering

the acceptance probability of replica transitions need to be de-
termined somehow to obtain uniform sampling of replicas in
the space of the ensembles and hence a good exploration of the
free energy landscape. Uniform sampling can be achieved only
if weight factors correspond to the free energies of the en-
sembles. In this respect, adaptive methods,25 such as the object
of the present study26 (called BAR-SGE), provide an effective
determination of weight factors without resorting to prepar-
atory simulations.16,21−23 This is indeed advantageous because
the weight factors from preparatory simulations may not be ac-
curate enough for ensuring uniform sampling.11 The BAR-SGE
method offers interesting perspectives in enhancing the con-
vergence of optimal weights with minimal introduction of
tunable parameters. The relevant parameter that comes into
play is the frequency of updating of the weight factors during
the simulation, which must ensure the storage of a sufficient
number of work samples to get accurate free energy estimates
(see eq 15). Although the rate of convergence of the optimal
weights is quite fast for the system under study, it is obviously
expected to slow down with the system size, like in all SGE-
based methodologies.16,23 Further investigation is warranted in
order to assess how the convergence of thermodynamical aver-
ages scales with system size in BAR-SGE as compared to RE.
The above and other issues are addressed here through the
comparison of two BAR-SGE simulations with a RE simulation
performed on a system made of one alanine dipeptide in water
solution. The motivation of this study is two-fold. On one side,
we provide a test of the BAR-SGE algorithm, which is more
physically meaningful than those made on the simple model
system of the original article;26 at the same time, we furnish a
thorough comparison of BAR-SGE with the more popular RE

Figure 8. Φ−Ψ projection of the free energy surface, F(Φ,Ψ), calculated from the RE, SGE-8, SGE-1, and canonical simulations (see labels on top
left of the panels). The chromatic scale on the right of the panels is in units of kJ mol−1. The deep brown color marks regions with out of scale
F(Φ,Ψ). The histogram channel size for Φ and Ψ is 7.2°.

Figure 9. Time-dependence of the root-mean-square deviation of
gt(Φ,Ψ) from the reference one, gref(Φ,Ψ) (see eq 20). Dashed line, RE
simulation; solid line, SGE-8 simulation; dotted line, SGE-1 simulation.
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approach. On the other hand, we present several variants of the
SGE method (simulated solute tempering, Hamiltonian simu-
lated tempering, and multiwindow tempering), made available
to the interested reader via ORAC, a free of charge program
for molecular dynamics simulations (http://www.chim.unifi.it/
orac).
The overall conclusion is that, by using the BAR-SGE algo-

rithm, SGE simulations can be performed with a convergence
of thermodynamic properties comparable to that observed in
RE simulations at the same computational cost. Our analysis is
focused on (i) the sampling of the extended-system ensembles,
(ii) the convergence of the ensemble free energy differences,
and (iii) the free energy surface as a function of the dipeptide
dihedral angles Φ and Ψ. We have shown that BAR-SGE
addresses (successfully) the most critical aspect of SGE simu-
lations, while leaving the other features of the methodology un-
altered. In view of its main advantagenot requiring synchro-
nization and communication between replicas/processors
SGE with a BAR-SGE calculation of optimal weights is, in our
opinion, a valid and attractive alternative to standard RE
schemes for the simulation of complex molecular systems.

A. MULTIWINDOW TEMPERING
In MWT, the probabilities of accepting replica transitions are
determined by SGE-like criteria. Any type of collective co-
ordinate can, in principle, be adopted for sampling. Three geo-
metrical coordinates are actually used in the ORAC program:
(1) the distance between two atoms, (2) the bending angle
defined by three, not necessarily bonded, atoms, and (3) the
dihedral angle defined by four, not necessarily bonded, atoms.
The choice of the atoms is indeed arbitrary and may not respect
the molecular nature of the system. The sampling is enhanced
by means of harmonic potential terms (the window potentials)
acting on such geometrical coordinates, whose equilibrium
values depend parametrically on λn = (λn

dist,λn
bend,λn

dihed). Of course,
one or two components of λn can be identically zero for any
n ∈ (1, 2, ..., N). To simplify the discussion, we limit the
illustration of the method to simulations where the collective
coordinate corresponds to an atom−atom distance (e.g., the
end-to-end distance of a polypeptide). In this case, the dimen-
sionless Hamiltonian of a replica in ensemble n is

= β + + − λh x p V x u p k r( , ) [ ( ) ( ) ( ) ]n n
dist 2

(22)

where V(x) and u(p) have the usual meaning, k is a constant,
and r is the instantaneous distance between the two chosen
atoms. Like in SST, replica transitions are realized at fixed con-
figurations and momenta. Thus, applying the known proce-
dure, we recover the acceptance probability for an attempted
(x,p)n → (x,p)m replica transition:

→ = β −λ − −λ +Δ →n macc[ ] min(1, e )k r r f[( ) ( ) ]n m n m
dist 2 dist 2

(23)

If additional geometrical coordinates are introduced in the
definition of the collective coordinate, then the related har-
monic potential terms (analogous to that of eq 22) will appear
in the dimensionless Hamiltonian. Note that the constant k of
the previous equations determines the stiffness of the window
potentials. To obtain not negligible acceptance probabilities via
large λ-ensemble overlaps, the values of k and of the differences
λn+1
dist − λn

dist must be chosen properly. If k is large and the
differences λn+1

dist − λn
dist are not small enough, then the ac-

ceptance probabilities of eq 23 will vanish. On the other hand,

if k is small, then the window potentials will be very broad and
therefore unable to allow for an extensive sampling of the space
of the collective coordinate.

B. OPTIMAL WEIGHT EVALUATION FROM
INDEPENDENT ESTIMATES AND ASSOCIATED
VARIANCES

As discussed in section 5, optimal weights are evaluated basi-
cally via eq 15, and only temporary values are obtained from
eq 16. For each pair of neighboring ensembles, the simulation
produces a series of independent estimates of free energy differ-
ences, say Δf1, Δf 2, ..., Δf P (see point 3a of section 5). Here, for
convenience, the subscript in Δf i labels independent estimates
of a given pair of neighboring ensembles. The series is updated
with a rate specified by the Lb parameter introduced in point 3
of section 5. Therefore, the number P of independent free
energy estimates depends, on average, on the current simu-
lation time and on Lb. For each Δf i, it is possible to quantify the
uncertainty through the associated variance δ2(Δf i) calculated
following Shirts et al.:43
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where Δf ′ = Δf n→m + ln(Nm→n/Nn→m) (see eq 15 for the
notation). The quantity δ2(Δf n→m) can be calculated once
Δf n→m is recovered from eq 15. We can then write Δ̂f,
the optimal estimator of P−1∑i=1

P Δf i, by a weighted sum of
the individual estimates:26
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∑ δ Δ Δ
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i
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i i
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j
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When at least one Δf i estimate is available, the quantity Δ̂f is
used as the optimal weight in the acceptance probability of eq 14.
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